References
[1]. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., & Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.
[2]. Divya Sree, K. V., & Ruksana, S. K. (2018). Simulation of high frequency step down of single phase matrix converter as an universal converter. i-manager's Journal on Circuits & Systems, 7(1).
[3]. Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428.
[4]. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in Neural Information Processing Systems, 30.
[5]. Kipf, T. N. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
[7]. Pena, R., Clare, J. C., & Asher, G. M. (1996). Doublyfed induction generator using back-to-back PWMconverters and its application to variable-speed windenergy generation. IEE Proceedings-Electric Power Applications, 143(3), 231-241.
[8]. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020). Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637.
[10].
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61-80.
[12].
Wheeler, P. W., Rodriguez, J., Clare, J. C., Empringham, L., & Weinstein, A. (2002). Matrix converters: A technology review. IEEE Transactions on Industrial Electronics, 49(2), 276-288.
[13].
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4-24.