References
[1]. Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2D pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7291- 7299).
[2]. Charles, J., Pfister, T., Magee, D., Hogg, D., & Zisserman, A. (2016). Personalizing human video pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3063- 3072).
[3]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
[4].
Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (2016). Deepercut: A deeper, stronger, and faster multi-person pose estimation model. In European Conference on Computer Vision (pp. 34-50). Springer International Publishing.
[5]. Kanazawa, A., Black, M. J., Jacobs, D. W., & Malik, J. (2018). End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7122-7131).
[6]. Katre, Y., & Chandel, G. S. (2014). Image forgery detection using analysis of CFA artifacts. International Journal of Advanced Technology in Engineering and Science, 2(1), 381-389.
[7].
Katre, Y., Gawande, K., Kaware, V., Pancheshwar, P., Bais, S., Mune, P., & Mohurley, R. (2024). Review on obstacle detection in solar panel cleaning applications. i-manager's Journal on Circuits & Systems, 12(1), 44-53.
[8].
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2023). SMPL: A skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries, 2, 851-866.
[9].
Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H. P., & Theobalt, C. (2017). Vnect: Real-time 3D human pose estimation with a single RGB camera. ACM Transactions on Graphics (Tog), 36(4), 1- 14.
[11]. Pavlakos, G., Zhou, X., Derpanis, K. G., & Daniilidis, K. (2017). Coarse-to-fine volumetric prediction for single- image 3D human pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7025-7034).
[12]. Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 652-660).
[13].
Raghuwanshi, M. M., Katre, Y., Sahu, A., Sharma, D., Udapure, A., & Lonarkar, C. (2024). Weather prediction with machine learning. International Journal of Innovative Science and Research Technology, 9(9), 3271-3275.
[15]. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510- 4520).
[17].
Song, S., Lan, C., Xing, J., Zeng, W., & Liu, J. (2018). Spatio-temporal attention-based LSTM networks for 3D action recognition and detection. IEEE Transactions on Image Processing, 27(7), 3459-3471.
[18]. Sun, X., Xiao, B., Wei, F., Liang, S., & Wei, Y. (2018). Integral human pose regression. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 529-545).
[19]. Wei, S. E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4724-4732).
[20]. Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1395-1403).
[21]. Zimmermann, C., & Brox, T. (2017). Learning to estimate 3D hand pose from single RGB images. In Proceedings of the IEEE International Conference on Computer Vision (pp. 4903-4911).