References
[2]. Busacca, A., & Monaca, M. A. (2023). Deepfake: Creation, purpose, risks. In Innovations and Economic and Social Changes Due to Artificial Intelligence: The State of the Art (pp. 55-68). Cham: Springer Nature Switzerland.
[4]. Kulkarni, M., Mahajan, R. A., Shivale, N. M., Patil, S. S., Bhandari, G. M., & Sonawane, V. D. (2024). Enhancing social network analysis using graph neural networks. Advances in Nonlinear Variational Inequalities, 27(4), 213-230.
[5].
Lewis, J. K., Toubal, I. E., Chen, H., Sandesera, V., Lomnitz, M., Hampel-Arias, Z., & Palaniappan, K. (2020). Deepfake video detection based on spatial, spectral, and temporal inconsistencies using multimodal deep learning. In 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1-9). IEEE.
[8]. Maurya, A., Islam, K. M., & Ghosh, A. (n.d.). Comprehensive Analysis of Recent Advancements, Patents, and Research Contributions in AI, IoT, and Biomedical Technologies.
[9].
Pan, D., Sun, L., Wang, R., Zhang, X., & Sinnott, R. O. (2020). Deepfake detection through deep learning. In 2020 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT) (pp. 134-143). IEEE.
[10].
Patel, Y., Tanwar, S., Gupta, R., Bhattacharya, P., Davidson, I. E., Nyameko, R., & Vimal, V. (2023). Deepfake generation and detection: Case study and challenges. IEEE Access, 11, 143296-143323.
[11]. Rana, M. S., Murali, B., & Sung, A. H. (2021). Deepfake detection using machine learning algorithms. In 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 458-463). IEEE.
[13].
Seow, J. W., Lim, M. K., Phan, R. C., & Liu, J. K. (2022). A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities. Neurocomputing, 513, 351-371.
[14]. Shivale, N.M., Mahajan, R.A., Bhandari, G.M., Sonawane, V.D., Kulkarni, M.M., Patil, S.S. (2024). “Optimizing Blockchain Protocols with Algorithmic Game Theory”, Advances in Nonlinear Variational Inequalities, 2024 27(4), 196–212
[18]. Thorat, A., Kadam, B., Rampure, P., Patil, S., & Sonawane, V. (2025). Design and Implementation of an AI/ML Framework for Identifying Face-Swapped Deepfake videos. International Journal of Innovative Science and Research Technology, 10(5), 4314-4318.
[19]. Trinh, L., Tsang, M., Rambhatla, S., & Liu, Y. (2021). Interpretable and trustworthy deepfake detection via dynamic prototypes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1973-1983).