References
[1].
Adeleke, A. A., Odusote, J. K., Ikubanni, P. P., Lasode, O. A., Malathi, M., & Paswan, D. (2021). Essential basics on biomass torrefaction, densification and utilization. International Journal of Energy Research, 45(2), 1375-1395.
[2]. Ahmed, A. M., Moki, E. C., Wawata, I. G., & Rapheal, I. A. (2020). Production and characterization of fuel briquettes. International Journal of Advanced Academic Research: Sciences, Technology and Engineering, 6(3), 1–10.
[3].
Anggono, W., Hayakawa, A., Okafor, E. C., Gotama, G. J., & Wongso, S. (2021). Laminar burning velocity and markstein length of CH4/CO2/air premixed flames at various equivalence ratios and CO2 concentrations under elevated pressure. Combustion Science and Technology, 193(14), 2369-2388.
[5].
Banerjee, S., Rout, S., Banerjee, S., Atta, A., & Das, D. (2019). Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energy Conversion and Management, 195, 844-853.
[6]. Birwatkar, V. R., Khandetod, Y. P., Mohod, A. G., Dhande, K. G., Source, O. E., Dapoli, T., & Dapoli, T. (2014). Physical and thermal properties of biomass briquetted fuel. Indian Journal of Scientific Research and Technology (INDJSRT), 2(4), 55-62.
[8].
Brunerová, A., Roubík, H., Brožek, M., Herák, D., Šleger, V., & Mazancová, J. (2017). Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies, 10(12), 2119.
[10].
Chan, Y. H., Cheah, K. W., How, B. S., Loy, A. C. M., Shahbaz, M., Singh, H. K. G., & Ngan, S. L. (2019). An overview of biomass thermochemical conversion technologies in Malaysia. Science of The Total Environment, 680, 105-123.
[11].
Chen, M., Zhong, H., Chen, L., Zhang, Y., & Zhang, M. (2021). Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite. Journal of Cleaner Production, 278, 123996.
[16]. Gotama, J. D., Fernando, Y., & Pasha, D. (2021). Pengenalan gedung universitas teknokrat Indonesia berbasis augmented reality. Jurnal Informatika dan Rekayasa Perangkat Lunak, 2(1), 28-38.
[17].
Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel, 272, 117632.
[18]. Heang, L., Choeng, P., Vongchanh, K., & Chan, S. (2020). Experimental Investigation on Sawdust and Tree Leaves Briquette Ratio Properties using Fish Oil as Binder. ResearchGate.
[20].
Hurford, A. P., Harou, J. J., Bonzanigo, L., Ray, P. A., Karki, P., Bharati, L., & Chinnasamy, P. (2020). Efficient and robust hydropower system design under uncertainty-A demonstration in Nepal. Renewable and Sustainable Energy Reviews, 132, 109910.
[21]. Ibitoye, S. E., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2022). Combustion, physical, and mechanical characterization of composites fuel briquettes from carbonized banana stalk and corncob. I nternational Journal of Renewable Energy Development, 11(2), 435-447.
[25]. Maina, M. B., Oluwole, F. A., & Mukhtar, U. A. (2019). Energy resource from agriculture: Prospects and problems. ATBU Journal of Science, Technology and Education, 7(4), 118-128.
[26]. Meharu, K. (2019). Briquette from coffee husk. Journal of Waste Management and Disposal, 2(1), 1-9.
[31].
Ramírez-Ramírez, M. A., Carrillo-Parra, A., Ruíz- Aquino, F., Hernández-Solís, J. J., Pintor-Ibarra, L. F., González-Ortega, N., ... & Rutiaga-Quiñones, J. G. (2022). Evaluation of selected physical and thermal properties of briquette hardwood biomass biofuel. BioEnergy Research, 15(3), 1407-1414.
[33].
Seco, A., Espuelas, S., Marcelino, S., Echeverría, A. M., & Prieto, E. (2020). Characterization of biomass briquettes from spent coffee grounds and xanthan gum using low pressure and temperature. BioEnergy Research, 13(1), 369-377.
[34]. Shuma, R., & Madyira, D. M. (2019). Emissions Comparison of loose biomass briquettes with cow dung and cactus binders. Procedia Manufacturing, 35, 130- 136.
[35]. Shyamalee, D., Amarasinghe, A. D. U. S., & Senanayaka, N. S. (2015). Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications, 5(3), 1-8.
[36].
Siddiki, S. Y. A., Mofijur, M., Kumar, P. S., Ahmed, S. F., Inayat, A., Kusumo, F., & Mahlia, T. M. I. (2022). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782.
[38].
Tumutegyereize, P., Mugenyi, R., Ketlogetswe, C., & Gandure, J. (2016). A comparative performance analysis of carbonized briquettes and charcoal fuels in Kampala- urban, Uganda. Energy for Sustainable Development, 31, 91-96.
[39]. Uganda, K. (2016). Uganda Bureau of Statistics.
Kampala, Uganda and Calverton.
[40].
Velusamy, S., Subbaiyan, A., Kandasamy, S., Shanmugamoorthi, M., & Thirumoorthy, P. (2022). Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Archives of Environmental & Occupational Health, 77(3), 251-262.