A Common Fixed-Point Theorem for Semi-Compatible Mappings in a Complete Metric Space of an Implicit Relation via Inverse C-Class Functions

T. Rakesh Singh*
Department of Mathematics, Aurora Higher Education and Research Academy, Hyderabad, Telangana, India.
Periodicity:July - December'2025

Abstract

The aim of the paper is to obtain a common fixed-point theorem in a complete metric space through inverse C-class functions for six self-maps in. The result extends previous work by incorporating semi-compatible and reciprocally continuous pairs of mappings, along with commutatively conditions. A generalized contraction condition involving an implicit relation ensures convergence to a unique common fixed point. The results generalizes and improves upon the main results, contributing to the broader framework of fixed-point theory.

Keywords

Common Fixed-point, Metric Space, Inverse C-Class Function.

How to Cite this Article?

Singh, T. R. (2025). A Common Fixed-Point Theorem for Semi-Compatible Mappings in a Complete Metric Space of an Implicit Relation via Inverse C-Class Functions. i-manager’s Journal on Mathematics, 14(2), 14-20.

References

[1]. Abbas, M., Gopal, D., & Radenovic, S. (2013). A note on recently introduced commutative conditions. Indian Journal of Mathematics, 55(2), 195-201.
[4]. Ansari, A. H. (2014). Note on ϕ-ψ-contractive type mappings and related fixed point. In The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, 11, 377-380.
[5]. Ansari, A. H., Popa, V., Singh, Y. M., & Khan, M. S. (2020). Fixed point theorems of an implicit relation via C-class function in metric spaces. Journal of Advanced Mathematical Studies, 13(1), 1-10.
[6]. Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1), 133-181.
[8]. Hussain, N., Shah, M. H., & Radenović, S. (2011). Fixed points of weakly contractions through occasionally weak compatibility. Journal of Computational Analysis & Applications, 13(3), 532.
[12]. Jungck, G., Murthy, P. P., & Cho, Y. J. (1993). Compatible mappings of type (A) and common fixed points. Mathematica Japonica, 38(2), 381-390.
[13]. Pathak, H. K., & Khan, M. S. (1995). Compatible mappings of type (B) and common fixed point theorems of Greguš type. Czechoslovak Mathematical Journal, 45(4), 685-698.
[14]. Pathak, H. K., Chang, S. S., & Cho, Y. J. (1994). Fixed point theorems for compatible mappings of type (P). Indian Journal of Mathematics, 36(2), 151-166.
[15]. Pathak, H. K., Cho, Y. J., & Kang, S. M. (1998). Compatible mappings of type (C) and common fixed point theorems of Gregus type. Demonstratio Mathematica, 31(3), 499-518.
[16]. Saleem, N., Ansari, A. H., & Jain, M. K. (2018). Some fixed point theorems of inverse C-class function under weak semi compatibility. J. Fixed Point Theory, 9, 1-23.
[17]. Saluja, A. S., & Jain, M. K. (2013). Fixed point theorems under conditional semicompatibility with control function. Adv. Fixed Point Theory, 3(4), 648-666.
[18]. Saluja, A. S., Jain, M. K., & Jhade, P. K. (2012). Weak semi compatibility and fixed point theorems. Bulletin of International Mathematical Virtual Institute, 2, 205-217.
[19]. Sessa, S. (1982). On a weak commutativity condition of mappings in fixed point considerations. Publications de l'Institut Mathématique, 32(46), 149-153.
[21]. Singh, M. R., & Singh, Y. M. (2007). Compatible mappings of type (E) and common fixed point theorems of Meir-Keeler type. International Journal of Mathematical Sciences and Engineering Applications, 1(2), 299-315.
[22]. Zhou, M., Jain, M. K., Khan, M. S., Secelean, N. A., & Muscat, O. (2021). Semi-compatible mappings and common fixed point theorems of an implicit relation via inverse C− class functions. AIMS Mathematics, 6(3), 2636-2652.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.