Abstract
TerraDefender's Military Intelligence Preparation of the Battlefield (IPB) leverages advanced geospatial intelligence, real-time data analytics, and machine learning to enhance battlefield awareness. It enables commanders to anticipate threats, evaluate terrain, and optimize decision-making in modern military operations, ensuring accurate, timely intelligence for strategic and tactical planning. Beyond military applications, TerraDefender's integration of secure image processing and encryption offers significant value for environmental monitoring, disaster response, and urban planning. By combining adaptability with strong data protection, it bridges operational needs across diverse domains. Ultimately, TerraDefender demonstrates the transformative potential of AI-driven, secure geospatial systems in shaping both defense strategies and civilian resilience.
Keywords
TerraDefender, Battlefield intelligence, Defense informatics, Sensor Fusion, Threat Detection, Situational Awareness.
How to Cite this Article?
Sherwin, J. J., Karthiga, R., Aathithya, S. K., Balaji, J. C. H., Priyanka, R., Raja, M. A., and Jananee, V. (2025). TerraDefender: A Unified Platform for Strategic Battlefield Intelligence Preparation. i-manager’s Journal on Computer Science, 13(2), 45-71.
References
[1]. Alenezi, M. N., Alabdulrazzaq, H., & Mohammad, N. Q. (2020). Symmetric encryption algorithms: Review and evaluation study. International Journal of Communication Networks and Information Security, 12(2), 256-272.
[2]. Daemen, J., & Rijmen, V. (2002). The Design of Rijndael. Springer-verlag, New York.
[4]. Gonzalez, R. C. (2009). Digital Image Processing. Pearson Education India.
[5]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
[7]. Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (2018). Handbook of Applied Cryptography. CRC Press.
[8]. Mohammad, O. F., Rahim, M. S. M., Zeebaree, S. R. M., & Ahmed, F. Y. (2017). A survey and analysis of the image encryption methods. International Journal of Applied Engineering Research, 12(23), 13265-13280.
[12].
Zhou, G., Zhang, D., Liu, Y., Yuan, Y., & Liu, Q. (2015). A novel image encryption algorithm based on chaos and Line map. Neurocomputing, 169, 150-157.
[13].
Zia, U., McCartney, M., Scotney, B., Martinez, J., AbuTair, M., Memon, J., & Sajjad, A. (2022). Survey on image encryption techniques using chaotic maps in spatial, transform and spatiotemporal domains. International Journal of Information Security, 21(4), 917-935.