References
[3]. Asif, S., Wenhui, Y., ul Ain, Q., Yueyang, Y., & Jinhai, S. (2024). Improving the accuracy of diagnosing and predicting coronary heart disease using ensemble method and feature selection techniques. Cluster Computing, 27(2), 1927-1946.
[7]. Bhanuteja, T., Kumar, K. V. N., Poornachand, K. S., Ashish, C., & Anudeep, P. (2021). Symptoms based multiple disease prediction model using machine learning approach. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 10 (9), 67-72.
[10].
Goel, R., Goswami, R. P., Totlani, S., Arora, P., Bansal, R., & Vij, D. (2022). Machine learning based healthcare chatbot. In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 188-192). IEEE.
[12].
Hossain, M. M., Pillai, S. K., Dansy, S. E., Bilong, A. A., & Panessai, I. Y. (2021). Mr. Dr. health-assistant chatbot. International Journal of Artificial Intelligence, 8(2), 58-73.
[13]. Hussain, H., Aswani, K., Gupta, M., & Thampi, G. T. (2020). Implementation of disease prediction chatbot and report analyzer using the concepts of NLP, machine learning and OCR. International Research Journal of Engineering and Technology (IRJET), 7 (4), 1814-1819.
[15].
Kosarkar, N., Basuri, P., Karamore, P., Gawali, P., Badole, P., & Jumle, P. (2022). Disease prediction using machine learning. In 2022 10th International Conference on Emerging Trends in Engineering and Technology- Signal and Information Processing (ICETET-SIP-22) (pp. 1- 4). IEEE.
[16]. Li, Z., Qiao, D., Yang, T., Wang, J., & Chen, H. (2025). Event recognition technology and short-term rockburst early warning model based on microseismic monitoring and ensemble learning. Scientific Reports, 15(1), 1-18.
[18].
Matsui, T., Matsuo, H., Silaghi, M., Hirayama, K., & Yokoo, M. (2018). Leximin asymmetric multiple objective distributed constraint optimization problem. Computational Intelligence, 34(1), 49-84.
[19]. Mendapara, H., Digole, S., Thakur, M., & Dange, A. (2021). Ai based healthcare chatbot system by using natural language processing. International Journal of Scientific Research and Engineering Development, 4(2), 89-96.
[20]. Musalamadugu, T. S., Kumari, N., & Rodriquez, R. V. (2023). Impact of the AI-induced app 'Babylon'in the healthcare industry. In Artificial Intelligence and Knowledge Processing (pp. 59-66). CRC Press.
[21]. Patil, M. V., Subhawna, P. S., & Singh, P. (2021). AI based healthcare chat bot system. International Journal of Scientific & Engineering Research, 12(7), 668-671.
[22]. Patton, L. L. (2015). The ADA Practical Guide to Patients with Medical Conditions. John Wiley & Sons.
[24]. Prasanna, N. L., Jyothi, P. J., & Nallamekala Rajeswari, R. T. (2018). A diagnosis system for multi class primary headaches using ant miner plus algorithm. International Journal of Recent Technology and Engineering (IJRTE), 7(4), 241-245.
[27]. Ranjan, A., Hukre, S., Rathore, S., & Kerkett, R. (2022). Healthcare chatbot: Sanjeevani. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10 (6), 3894-3900.
[28]. Sharmila, S. L., Dharuman, C., & Venkatesan, P. (2017). Disease classification using machine learning algorithms-a comparative study. International Journal of Pure and Applied Mathematics, 114(6), 1-10.
[29].
Shinde, N. V., Akhade, A., Bagad, P., Bhavsar, H., Wagh, S. K., & Kamble, A. (2021). Healthcare chatbot system using artificial intelligence. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1-8). IEEE.
[31]. Sriram, T. V., Rao, M. V., Narayana, G. S., Kaladhar, D. S. V. G. K., & Vital, T. P. R. (2013). Intelligent Parkinson disease prediction using machine learning algorithms. International Journal of Engineering and Innovative Technology, 3(3), 1568-1572.