References
[2]. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13(1), 281-305.
[3]. Brownlee, J. (2019). Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python. Machine Learning Mastery.
[4]. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 801-818).
[5].
Coan, L. J., Williams, B. M., Adithya, V. K., Upadhyaya, S., Alkafri, A., Czanner, S., & Czanner, G. (2023). Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Survey of Ophthalmology, 68(1), 17-41.
[7].
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., & Dehghani, M. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
[9]. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning. MIT Press, Cambridge.
[10].
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.
[11].
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. R., & Xu, D. (2021). Swin unetr: Swin transformers for semantic segmentation of brain tumors in MRI images. In International MICCAI Brainlesion Workshop (pp. 272-284). Springer International Publishing.
[15]. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).
[18]. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618-626).
[22]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 1-11.
[24].
Xu, X., Feng, Z., Cao, C., Li, M., Wu, J., Wu, Z., & Ye, S. (2021). An improved swin transformer-based model for remote sensing object detection and instance segmentation. Remote Sensing, 13(23), 4779.