References
[1].
Alamo, T., Normey-Rico, J. E., Arahal, M. R., Limon, D., & Camacho, E. F. (2006). Introducing linear matrix inequalities in a control course. IFAC Proceedings Volumes, 39(6), 205-210.
[2]. Anand, P. V. S., & Murty, K. N. (2005). Controllability and observability of Liapunov type matrix difference system. In Proceedings of 50th Congress of ISTAM (An International Meet) IIT Kharagpur (pp. 125-132).
[6]. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics.
[10]. Gahinet, P., Nemirovski, A., Laub, A. J., & Chilali, M. (1995). LMI Control Toolbox User's Guide. The MathWorks.
[11]. Graham, A. (2018). Kronecker Products and Matrix Calculus with Applications. Courier Dover Publications.
[14]. Manai, Y., Madssiaand, S., & Benrejeb, M. (2012). New approach for stabilisation of continuous takagi sugeno fuzzy system. International Journal of Automation and Power Engineering, 1(2), 42-46.
[15]. Murthy, K. N., & Anand, P. V. S. (2023). Controllability and observability of continuous matrix Liapunov systems. In Advances in Nonlinear Dynamics (pp. 365-380). Routledge.
[16]. Murthy, K. N., Prasad, K. R., & Anand, P. V. S. (1995). Two-Point boundary value problems associated with lyapunov type matrix difference system, dynamic systems and applications. USA, 4(2), 205-213.
[19]. Putcha, V. S. (2014). Discrete linear Sylvester repetitive process. Nonlinear Studies, 21(2), 205.
[21]. Putcha, V. S., Rompicharla, C. N., & Deekshitulu, G. V. S. R. (2012). A note on fuzzy discrete dynamical systems. The International Journal of Contemporary Mathematical Sciences, 7(39), 1931-1939.
[22]. Rompicharla, C. L., Putcha, S. V., & Deekshitulu, G. V. S. R. (2020). Existence of (ΦΨ) bounded solutions for linear first order Kronecker product systems. International Journal of Recent Scientific Research, 11(06), 39047-39053.
[24]. Rompicharla, L. C., Putcha, V. S., & Deekshitulu, G. V. S. R. (2024). Controllability and observability of fuzzy matrix lyapunov discrete dynamical system. Statistics and Applications, 22 (1), 1-20.
[25]. Rompicharla, L. C., Putcha, V. S., & Deekshitulu, G. V. S. R. (2025). Static output feedback control of continuous time matrix lyapunov and sylvester systems. Discontinuity, Nonlinearity, and Complexity, 14(03), 519-535.
[26]. Rompicharla, L. N., Putcha, S. V., & Deekshitulu, G. V. S. R. (2021). Kronecker product three point boundary value problems Existence and Uniqueness. International Research Journal of Engineering and Technology (IRJET), 08 (02), 431-440.
[27]. Rosinová, D., Veselý, V., & Kučera, V. (2003). A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems. Kybernetika, 39(4), 447-459.
[28]. Sharma, R. & Nagaria, D. (2018). Stability analysis of networked control system using LMI approach. International Journal of Engineering and Technology, 7(2.31), 249-251.
[29]. Veselý, V. (2001). Static output feedback controller design. Kybernetika, 37(2), 205-221.