References
[1]. A. O. Ögrenmis, M. Bektas, M. Ergüt, (2007). On the helices in the Galilean space G3 , Iranian Journal of Science & Technology, Transaction A, 31, 177-181.
[2]. A. O. Ögrenmis, M. Yeneroglu, (2010). Inextensible curves in the Galilean space, International Journal of the Physical Sciences 5(9),1424-1427.
3 [3]. A. O. Ögrenmis, (2010). On curvatures of a frenet curve in the pseudo-Galilean space G31 , Inter. J. Phys. Sci. 5, 2363- 1 2365.
[4]. B. Divjak, (1998). Curves in pseudo-Galilean geometry, Annales Univ. Sci. Budapest 41, 117-128.
[5]. B. Divjak, (2003). Special curves on ruled surfaces in Galilean and pseudo-Galilean space, Acta Math. Hungar. 98(3), 203-215.
[6]. B. Divjak, Z.Milin-Sipus, (2003). Minding's isometries of ruled surfaces in Galilean and pseudo-Galilean space, J. Geom. 77, 35-47.
[7]. B. Divjak and M. Sipus, (2008). Some special surfaces in the pseudo-Galilean space, Acta Math. Hungar. 118, 209-229.
[8]. D. Y. Kwon , FC. Park, DP Chi., (2005). Inextensible flows of curves and developable surfaces, Applied Mathematics Letters 18, 1156–1162.
[9]. D.Y. Kwon, F.C. Park, (1999). Evolution of inelastic plane curves, Appl. Math. Lett., 12, 115-119.
[10]. D.J. Unger, (1991). Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract. 50, 33-38.
[11]. D. Latifi, A. Razavi, (2008). Inextensible flows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16), 761-768.
[12]. E. Molnar, (1997). The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry, 38(2), 261-288.
[13]. G. Chirikjian, J. Burdick, (1994). A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom. 10, 343-354.
[14]. H. Mochiyama, E. Shimemura, H. Kobayashi, (1999). Shape control of manipulators with hyper degrees of freedom, Int. J. Robot.Res., 18, 584-600.
[15]. H.Q. Lu, J.S. Todhunter, T.W. Sze, (1993). Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst. 56, 265-285.
[16]. I.M. Yaglom, (1979). A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York.
[17]. I. Kamenarovic, (1991). Existence Theorems for Ruled Surfaces in the Galilean Space G3 . Rad HAZU Math. 10, 183-196.
[18]. J. Koenderink, (1990). Solid shape, MIT Press, Cambridge, MA.
[19]. M. Ergüt, E. Turhan, T. Körpinar, (2013). Characterization of inextensible flows of spacelike curves with Sabban frame in S21 Bol. Soc. Paran. Mat. 31(2), 47-53.
[20]. M. Kass, A. Witkin, D. Terzopoulos, (1987). Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 259-268.
[21]. M. Desbrun, M.-P. Cani-Gascuel, (1998). Active implicit surface for animation, in: Proc. Graphics Interface-Canadian Inf. Process. Soc., 143-150.
[22]. M. Gage, R.S. Hamilton, (1986). The heat equation shrinking convex plane curves, J. Differential Geom. 23, 69-96.
[23]. M. Grayson, (1987). The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26, 285- 314.
[24]. O. Röschel, (1984). Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben.
[25]. Z. M. Sipus, (2008). Ruled Weingarten surfaces in the Galilean space, Periodica Mathematica Hungarica, 56(2), 213- 225.