References
[1].
Aljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M., & Aslam, M. A. (2019). An integrated framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679-690.
[2]. Amershi, S. A. (2007). Combining Unsupervised and Supervised Machine Learning to Build User Models for Intelligent Learning Environments (Doctoral dissertation, University of British Columbia).
[6]. Choi, H., Lee, J. E., Hong, W. J., Lee, K., Recker, M., & Walker, A. (2016). Exploring Learning Management System Interaction Data: Combining Data-Driven and Theory-Driven Approaches. International Educational Data Mining Society.
[8]. Dawson, S., McWilliam, E., & Tan, J. P. L. (2008). Teaching Smarter: How Mining ICT Data can inform and Improve Learning and Teaching Practice. ASCILITE.
[9].
De Freitas, S., Gibson, D., Du Plessis, C., Halloran, P., Williams, E., Ambrose, M., & Arnab, S. (2015). Foundations of dynamic learning analytics: Using university student data to increase retention. British Journal of Educational Technology, 46(6), 1175-1188.
[10]. Doige, C. A. (2012). E-mail--Based formative assessment: A chronicle of research-inspired practice. Journal of College Science Teaching, 41(6).
[11].
Gomez-Sanchez, E., Er, E., Dimitriadis, Y., Bote-Lorenzo, M. L., Asensio-Perez, J. I., & Alvarez-Alvarez, S. (2019). Aligning learning design and learning analytics through instructor involvement: A MOOC case study. Interactive Learning Environments.
[12]. Harindranathan, P., & Folkestad, J. (2019). Learning analytics to inform the learning design: Supporting instructors' inquiry into student learning in unsupervised technology-enhanced platforms. Online Learning, 23(3), 34-55.
[13]. Hung, J. L., & Zhang, K. (2008). Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching. MERLOT Journal of Online Learning and Teaching, 4 (4), 426-437.
[14].
Hung, J. L., Wang, M. C., Wang, S., Abdelrasoul, M., Li, Y., & He, W. (2015). Identifying at-risk students for early interventions—A time-series clustering approach. IEEE Transactions on Emerging Topics in Computing, 5(1), 45-55.
[17]. Lodge, J., & Lewis, M. (2012). Pigeon pecks and mouse clicks: Putting the learning back into learning analytics. Future Challenges, Sustainable Futures. Proceedings Ascilite Wellington (pp. 560-564).
[19].
McDaniel, M. A., Agarwal, P. K., Huelser, B. J., McDermott, K. B., & Roediger III, H. L. (2011). Test-enhanced learning in a middle school science classroom: The effects of quiz frequency and placement. Journal of Educational Psychology, 103(2), 399.
[20].
McDaniel, M. A., Thomas, R. C., Agarwal, P. K., McDermott, K. B., & Roediger, H. L. (2013). Quizzing in middle school science: Successful transfer performance on classroom exams. Applied Cognitive Psychology, 27(3), 360-372.
[22].
Melero, J., Hernández-Leo, D., Sun, J., Santos, P., & Blat, J. (2015). How was the activity? A visualization support for a case of location based learning design. British Journal of Educational Technology, 46(2), 317-329.
[24].
Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback. British Journal of Educational Technology, 50(1), 128-138.
[26]. Rogers, T., Gašević, D., & Dawson, S. (2016). Learning analytics and the imperative for theory driven research. The SAGE Handbook of E-Learning Research (pp. 232-250).
[29]. Vellido, A., Castro, F., & Nebot, A. (2010). Clustering educational data. Handbook of Educational Data Mining (pp. 75-92).
[31]. Wise, A. F., & Shaffer, D. W. (2015). Why theory matters more than ever in the age of big data. Journal of Learning Analytics, 2(2), 5-13.