References
[1]. Sun, Y., & Bell, T. (2002). Dry sliding wear resistance of low temperature plasma carburized austenitic stainless steel, Wear, 253, 689-693.
[2]. Zhou, S., Zeng, X., Hu, Q., & Huang, Y. (2008). Analysis of crack behaviour for Ni-based WC composite coatings by laser cladding and crack-free realization, Applied Surface Science,255, 1646–1653.
[3]. Sutton, W.H. (1989). Microwave processing of ceramic materials, American Ceramic Society Bulletin, 168, 376-386.
[4]. Sharma, A. K., Aravindhan, S., & Krishnamurthy, R. (2002). Microwave glazing of alumina- titania ceramic composite coatings, Journal of the European Ceramic Society, 22, 2849-2860.
[5]. Ahmed, A., & Siores, E. (2001). Microwave joining of 48% alumina-32% zirconia-20% silica ceramics, Journal of Material Processing Technology, 118, 88-95.
[6]. Jerby, E. (2004). Microwave drilling of ceramic thermal-barrier coatings, Journal of the American Ceramic Society, 87 (2), 308–310.
[7]. Roy, R., Agrawal, D., Cheng, J., & Gedevanishvili, S. (1999). Full sintering of powdered metals parts in microwaves, Nature, 399, 664-667.
[8]. Sethi, G., Upadhyaya, A., & Agrawal, D. (2003). Microwave and conventional sintering of pre-mixed and prealloyed Cu-12 Sn bronze, Science of Sintering, 35, 49-65.
[9]. Leonelli, C., Veronesi, P., Denti, L., Gatto, A., & Iuliano, L. (2008). Microwave assisted sintering of green metal parts, Journal of Materials Processing Technology, 205, 489–496.
[10]. Souto, P.M., Menezes, R. R., & Kiminami R. H. G. A. (2011). Effect of Y2O3 additive on conventional and microwave sintering of mullite, Ceramic International, 37, 241–248.
[11]. Oghbaei, M., & Mirzaee, O. (2010). Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys Compounds, 494, 175–189.
[12]. Anklekar, R.M., Agrawal, D. K., & Roy, R. (2001). Microwave sintering and mechanical properties of P/M steel, Powder Metallurgy, 44 (4), 355-362.
[13]. Srinath, M.S., Sharma, A.K., & Pradeep Kumar (2011). A new approach to joining of bulk copper using microwave energy, Materials and Design, 32(5), 2685–2694.
[14]. Sharma, A. K., & Gupta, D. (2010). A method of cladding /coating of metallic and non metallic powders on metallic substrates by microwave irradiation, Indian Patent 527/ Del/2010.
[15]. Dheeraj Gupta, & Sharma A.K. (2011). Development and microstructural characterization of microwave cladding on austenitic stainless steel, Surface & Coatings Technology, 205, 5147–5155.
[16]. Mondal, A., Shukla, A., Upadhyaya, A., & Agrawal, D.(2010). Effect of Porosity and Particle Size on Microwave Heating of Copper, Science of Sintering, 42, 169-182.
[17]. Ramesh, C.S., Devaraj, D.S., Keshavamurthy, & R., Sridhar, B.R. (2011). Slurry erosive wear behaviour of thermally sprayed Inconel-718 coatings by APS process, Wear, 271, 1365– 1371.
[18]. Ping, D.H., Gu, B.R., Cui, C.Y., & Harada, H. (2007). Grain boundary segregation in a Ni–Fe-based (Alloy 718) superalloy, Material Science Engineering A, 456, 99–102, 2007.
[19]. Sindo Kou (2003). Welding Metallurgy, second edition, Basic concepts of solidification, John Wiley and Sons, Inc. Publication, 145-166.
[20]. Cieslak, M.J., Knorovsky, G.A., Headley, T.J., & Riming, Jr. A.D. (1989). Solidification metallurgy of alloy 718 and other Nb-containing superalloys in: E.A. Loria (Ed.), Conference proceedings on Superalloys 718- Metallurgy and Applications, The Minerals, Metals & Materials Society, 59.
[21]. DuPont, J.N., Robino, C.V., & Marder, A.R. (1998). Solidification and weldability of Nb bearing superalloys, Welding Journal, 77 , 417.
[22]. Vincent R. (1985). Precipitation around welds in Nickel based super alloys Inconel 718, Acta Materila, 30(7), 1205-1216.