References
[1].
Alex, A. G., Gebrehiwet, T., Kemal, Z., & Subramanian,
R. B. (2022). Structural performance of low-calcium fly ash geo-polymer reinforced concrete beam. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(5), 3643-3654.
[3]. ASTM, A. (2017). C496/C496M-17 Standard test
method for splitting tensile strength of cylindrical concrete specimens. In American Society for Testing and Materials.
[5].
Bhusal, B., Paudel, S., Tanapornraweekit, G., Maskey,
P. N., & Tangtermsirikul, S. (2023, November). Seismic performance evaluation and strengthening of RC beam-column joints adopted in Nepal. In Structures (Vol. 57, p. 105205). Elsevier.
[7]. Bureau of Indian Standards. (1970). Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS: 383-1970 (Reaffirmed 2002), New Delhi, India.
[8]. Bureau of Indian Standards. (1970). Specification for Pulverized Fuel Ash, Part 1: For use as Pozzolana in Cement, Cement Mortar and Concrete IS: 3812 (Part 1)-2003, New Delhi, India.
[9]. Bureau of Indian Standards. (1989). 43 Grade Ordinary Portland Cement –Specification IS: 8112-1989, New Delhi, India.
[10]. Bureau of Indian Standards. (1996). Methods of Physical Tests for Hydraulic Cement, Part 1: Determination of Fineness by Dry Sieving IS: 4031 (Part 1)-1996, New Delhi, India.
[11]. Bureau of Indian Standards. (1999). Concrete Admixtures: Specification IS: 9103-1999, New Delhi, India.
[12]. Bureau of Indian Standards. (2000). Plain and Reinforced Concrete-Code of Practice IS: 456-2000, (Reaffirmed 2005), New Delhi, India.
[13]. Bureau of Indian Standards. (2000). Plain and Reinforced Concrete-Code of Practice IS: 456-2000, New Delhi, India.
[14]. Bureau of Indian Standards. (2009). Recommended Guidelines for Concrete Mix Design IS: 10262-2009, New Delhi, India.
[15]. CP 110. (1972). British code of practice, PART 1.
[16].
Ćwik, A., Casanova, I., Rausis, K., Koukouzas, N., & Zarebska, K. (2018). Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. Journal of Cleaner Production, 202, 1026-1034.
[17]. Dixon, D. E., Prestrera, J. R., Burg, G. R., Chairman, S.
A., Abdun-Nur, E. A., Barton, S. G., & Lee, S. H. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete (ACI 211.1-91) reapproved 1997. Reported by ACI Committee, 211, 1-38.
[19].
Hawileh, R. A., Abdalla, J. A., Nawaz, W., Sharif Zadeh, A., Mirghani, A., Al Nassara, A., & Shantia, M. (2024). Effects of replacing cement with GGBS and Fly Ash on the flexural and shear performance of reinforced concrete beams. Practice Periodical on Structural Design and Construction, 29(2), 04024011.
[20]. Heidrich, C., & Feuerborn, J. (2022). Global opportunities and challenges for coal combustion products with a Circular Economy. World of Coal Ash (pp. 1-9).
[21]. Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2011). An Introduction to Geotechnical Engineering (2nd ed). Pearson.
[22].
Ikpa, C. C., Alaneme, G. U., Mbadike, E. M., Nnadi,
E., Chigbo, I. C., Abel, C., & Odum, L. O. (2021). Evaluation of water quality impact on the compressive strength of concrete. Jurnal Kejuruteraan, 33(3), 527-538.
[23].
Jamora, J. B., Gudia, S. E. L., Go, A. W., Giduquio, M. B., & Loretero, M. E. (2020). Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Management, 103, 137-145.
[24].
Ji, L., Yu, H., Zhang, R., French, D., Grigore, M., Yu, B., & Zhao, S. (2019). Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Processing Technology, 188, 79-88.
[27].
Kula, I., Olgun, A. S. İ. M., Sevinc, V., & Erdogan, Y. (2002). An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials. Cement and Concrete Research, 32(2), 227-232.
[28].
Liao, G., Wang, D., Wang, W., & He, Y. (2024).
Microstructure, strength development mechanism, and CO2 emission analyses of alkali-activated fly ash-slag mortars. Journal of Cleaner Production, 442, 141116.
[29]. Mehta, P. K. (2004, May). High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the International Workshop on Sustainable Development and Concrete Technology (pp. 3-14). Ames, IA, USA: Iowa State University.
[32]. Nazari, A., & Sanjayan, J. G. (2016). Handbook of Low Carbon Concrete. Butterworth-Heinemann.
[33]. NBC-105. (1994). Seismic Design of Buildings in Nepal. Ministry of Physical Planning and Works, Government of Nepal.
[35]. Sunitha, P., Goswami, R., & Murty, C. V. R. (2016). Idealized bilinear moment-curvature curves of RC sections for pushover analysis of RC frame buildings. The Indian Concrete Journal, 90(4), 43-54.
[36].
Pandey, S., Paudel, S., Devkota, K., Kshetri, K., & Asteris, P. G. (2024). Machine learning unveils the complex nonlinearity of concrete materials' uniaxial compressive strength. International Journal of Construction Management, (pp. 1-15).
[40]. Paudel, S., & Tangtermsirikul, S. (2021). Experimental and Numerical Studies on Composite Structures Under Lateral Cyclic Loading: Precast L-Plate Encased Composite Columns and Wide U Beam-Column Joints (Doctoral dissertation, Thammasat University).
[46]. Sathia, R., Babu, K. G., & Santhanam, M. (2008, November). Durability study of low calcium fly ash geopolymer concrete. In The 3rd ACF International Conference-ACF/VCA (Vol. 2008, pp. 1153-1159). Indian Institute of Technology Madras Chennai, India.
[49]. Shetty, M. S., & Jain, A. K. (2019). Concrete Technology (Theory and Practice). S. Chand Publishing.
[50]. Solahuddin, B. A. (2021). A review on structural performance of fly ash reinforced concrete beam. International Journal of Innovative Science, Engineering & Technology, 8(2), 132-135.
[51]. Sunitha, P., Goswami, R., & Murty, C. V. R. (2016). Idealized bilinear moment-curvature curves of RC sections for pushover analysis of RC frame buildings. The Indian Concrete Journal, 90(4), 43-54.
[52].
Tanapornraweekit, G., Jiramarootapong, P., Paudel, S., Tangtermsirikul, S., & Snguanyat, C. (2022). Experimental and numerical investigation of 3D-printed mortar walls under uniform axial compression. Construction and Building Materials, 360, 129552.
[53].
Tanapornraweekit, G., Jiramarootapong, P., Paudel, S., Tangtermsirikul, S., & Snguanyat, C. (2022). Experimental and numerical investigation of 3D-printed mortar walls under uniform axial compression. Construction and Building Materials, 360, 129552.