References
[1].
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical image analysis using convolutional neural networks: A review. Journal of Medical systems, 42, 1-13.
[4]. Cai, Z., & Vasconcelos, N. (2018). Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6154-6162).
[5]. Chen, L. C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., & Adam, H. (2018). Masklab: Instance segmentation by refining object detection with semantic and direction features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4013-4022).
[6].
Cumbajin, E., Rodrigues, N., Costa, P., Miragaia, R., Frazão, L., Costa, N., & Pereira, A. (2023). A systematic review on deep learning with CNNs applied to surface defect detection. Journal of Imaging, 9(10), 193.
[7]. Deng, J., Xuan, X., Wang, W., Li, Z., Yao, H., & Wang, Z. (2020, November). A review of research on object detection based on deep learning. In Journal of Physics: Conference Series, 1684 (1), 012028. IOP Publishing.
[9].
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., & Garcia-Rodriguez, J. (2018). A survey on deep learning techniques for image and video semantic segmentation. Applied Soft Computing, 70, 41-65.
[11]. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587).
[14]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
[15]. Howard, A. G. (2017). Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861.
[16]. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700-4708).
[19].
Iliadis, L. A., Sotiroudis, S. P., Kokkinidis, K., Sarigiannidis, P., Nikolaidis, S., & Goudos, S. K. (2022, June). Music deep learning: A survey on deep learning methods for music processing. In 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE.
[24]. Kishore, G., Gnanasundar, G., & Harikrishnan, S. (2019). A survey on object detection using deep learning techniques. International Research Journal of Engineering and Technology (IRJET), 6 (2), 2140-2143.
[25]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
[27]. Lin, T. (2017). Focal Loss for Dense Object Detection.
arXiv preprint arXiv:1708.02002.
[28]. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2117-2125).
[29].
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.
[31].
Manolakis, D., Truslow, E., Pieper, M., Cooley, T., & Brueggeman, M. (2013). Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms. IEEE Signal Processing Magazine, 31(1), 24-33.
[33].
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., & Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), 1-36.
[35]. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7263-7271).
[38].
Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., & Xu, M. (2020). A survey on machine learning techniques for cyber security in the last decade. IEEE Access, 8, 222310-222354.
[39]. Shen, Z., Liu, Z., Li, J., Jiang, Y. G., Chen, Y., & Xue, X. (2017). Dsod: Learning deeply supervised object detectors from scratch. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1919-1927).
[41].
Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabiraman, V. (2021b). Comparative analysis of deep learning image detection algorithms. Journal of Big Data, 8(1), 66.
[44]. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
[45]. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826).
[46]. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.
[47]. Wang, R. J., Li, X., & Ling, C. X. (2018). Pelee: A real-time object detection system on mobile devices. Advances in Neural Information Processing Systems, 31.
[49]. Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64.
[53]. Zhang, S., Wen, L., Bian, X., Lei, Z., & Li, S. Z. (2018b).
Single-shot refinement neural network for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4203-4212).
[54]. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018a).
Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6848-6856).
[55]. Ziou, D., & Tabbone, S. (1998). Edge detection techniques-an overview. Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, 8(4), 537-559.
[56].
Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023).
Object detection in 20 years: A survey. Proceedings of the IEEE, 111(3), 257-276.