References
[1]. Abrahart, R. J., & See, L. M. (2014). GeoComputation. CRC Press.
[4].
An, Z., Yu, T., Bui, T. Q., Wang, C., & Trinh, N. A. (2018).
Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis. Advances in Engineering Software, 116, 36-49.
[6].
Balin, N., Casenave, F., Dubois, F., Duceau, E., Duprey, S., & Terrasse, I. (2015). Boundary element and finite element coupling for aeroacoustics simulations. Journal of Computational Physics, 294, 274-296.
[11]. Brunsdon, C., & Singleton, A. (Eds.). (2015).
Geocomputation: A Practical Primer. Sage.
[14].
Chadzynski, A., Krdzavac, N., Farazi, F., Lim, M. Q., Li, S., Grisiute, A., & Kraft, M. (2021). Semantic 3D city database-an enabler for a dynamic geospatial knowledge graph. Energy and AI, 6, 100106.
[15]. Chaudhry, A., Sidhu, M. S., Chaudhary, G., Grover, S., Prabhakar, M., & Malik, V. (2014). Evaluation of stress changes in mandible with twin block appliance-A finite element study. Baba Farid University Dental Journal, 5(1), 13-20.
[18]. European Union. (2007). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community. Official Journal of the European Union, 50, 1–14
[20]. Goodchild, M. F., Longley, P. A., Maguire, D. J., & Rhind, D. W. (2005). Geographic Information Systems and Science. Wiley & Sons.
[21].
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
[23]. Graduate coursework. (n.d.). Spatial Analytics (ABPL90408). The University of Melbourne Handbook.
[24]. Hammond, T. C., Oltman, J., & Salter, S. (2019). Using computational thinking to explore the past, present, and future. Social Education, 83(2), 118-122.
[25].
Harris, R., O'Sullivan, D., Gahegan, M., Charlton, M., Comber, L., Longley, P., & Evans, A. (2017). More bark than bytes? Reflections on 21+ years of geocomputation. Environment and Planning B: Urban Analytics and City Science, 44(4), 598-617.
[28].
Hu, L., Wang, Y., Feng, P., Wang, H., & Qiang, H. (2021). Debonding development in cracked steel plates strengthened by CFRP laminates under fatigue loading:
Experimental and boundary element method analysis. Thin-Walled Structures, 166, 108038.
[29].
Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert, A., & Ronquest, M. (2015, May). Geomesa: A distributed architecture for spatio-temporal fusion. In Geospatial Informatics, Fusion and Motion Video Analytics V 9473, 128-140. SPIE.
[30].
Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625-636.
[31]. Junior, P. A., & Gomes, D. J. C. (2015). A
Comprehensive introduction of the finite element method for undergraduate courses. International Journal of Engineering Research and Applications, 5(4), 94-101.
[32].
Kanchi, S., Sandilya, S., Ramkrishna, S., Manjrekar, S., & Vhadgar, A. (2015, August). Challenges and solutions in big data management-an overview. In 2015 3rd International Conference on Future Internet of Things and Cloud (pp. 418-426). IEEE.
[37].
Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., & Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 119-133.
[38]. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Science and Systems. John Wiley & Sons.
[39]. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2008). Geographic Information Systems and Science. John Wiley, Chichester.
[40].
Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 111-128.
[41].
Luo, P., Song, Y., Zhu, D., Cheng, J., & Meng, L. (2023). A generalized heterogeneity model for spatial interpolation. International Journal of Geographical Information Science, 37(3), 634-659.
[45]. Ndukwe, N. K. (2001). Digital Technology in Surveying and Mapping: Principles, Applications and Legislative Issues. Rhyce Kerex.
[49]. Pingel, T. (2018). The raster data model. Geographic Information Science & Technology Body of Knowledge,
2018.
[52].
Robin, T. A., Khan, M. A., Kabir, N., Rahaman, S. T., Karim, A., Mannan, I. I., & Rashid, I. (2019). Using spatial analysis and GIS to improve planning and resource allocation in a rural district of Bangladesh. BMJ Global Health, 4(Suppl 5), e000832.
[55]. Sabi'u, N., Muhammed, S. N., Zakaria, N., & Khalil,
M. S. (2015). Vector data model in GIS and how it underpins a range of widely used spatial analysis techniques. Dutse Journal of Pure and Applied Sciences, 1(1), 122-132.
[56].
Sathish, K., Anbazhagan, R., Venkata, R. C., Arena, F., & Pau, G. (2022). Investigation and numerical simulation of the acoustic target strength of the underwater submarine vehicle. Inventions, 7(4), 111.
[57].
See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., & Rutzinger, M. (2016). Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5(5), 55.
[58].
Shekhar, S., Evans, M. R., Gunturi, V., Yang, K., & Cugler, D. C. (2014). Benchmarking spatial big data. In Specifying Big Data Benchmarks: First Workshop, WBDB 2012, San Jose, CA, USA, May 8-9, 2012, and Second Workshop, WBDB 2012, Pune, India, December 17-18, 2012, Revised Selected Papers (pp. 81-93). Springer Berlin Heidelberg.
[60].
Shook, E., Hodgson, M. E., Wang, S., Behzad, B., Soltani, K., Hiscox, A., & Ajayakumar, J. (2016). Parallel cartographic modeling: A methodology for parallelizing spatial data processing. International Journal of Geographical Information Science, 30(12), 2355-2376.
[61].
Siddiqa, A., Hashem, I. A. T., Yaqoob, I., Marjani, M., Shamshirband, S., Gani, A., & Nasaruddin, F. (2016). A survey of big data management: Taxonomy and state-of-the-art. Journal of Network and Computer Applications, 71, 151-166.
[63]. Sit, M. A., Koylu, C., & Demir, I. (2019). Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: A case study of Hurricane Irma. International Journal of Digital Earth, 12 (11), 1205–1229.
[65].
Song, Y., Thatcher, D., Li, Q., McHugh, T., & Wu, P. (2021). Developing sustainable road infrastructure performance indicators using a model-driven fuzzy spatial multi-criteria decision making method. Renewable and Sustainable Energy Reviews, 138, 110538.
[67]. Srivas, S., & Khot, P. G. (2018). GIS-based computational tools & techniques for multidimensional data analysis & visualization. International Journal of Applied Engineering Research, 13(15), 11770-11775.
[69]. Strand, G. H. (2016). Spatial Data Management.
Nordiskt statistikermøte.
[70].
Thach, N. N., Ngo, D. B. T., Xuan-Canh, P., Hong-Thi,
N., Thi, B. H., Nhat-Duc, H., & Dieu, T. B. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74-85.
[71]. Turk, A. G., & Kuhn, W. (1992). An Introduction to Geographic Information Systems. Wiley.
[72].
Viswanathan, S., Holden, C., Egeland, O., & Greco,
M. (2021). An open-source python-based boundary-element method code for the three-dimensional, zero-froude, infinite-depth, water-wave diffraction-radiation problem. Modeling, Identification and Control, 42(2), 47–81.
[75].
Wang, Q., Zhou, W., Cheng, Y., Ma, G., & Chang, X. (2017). Line integration method for treatment of domain integrals in 3D boundary element method for potential and elasticity problems. Engineering Analysis with Boundary Elements, 75, 1-11.
[77]. Watts, D. J. (2014). Common sense and sociological explanations. American Journal of Sociology, 120(2), 313-351.
[78].
Wen, J., Xiang, Z., Li, L., Zhang, Y., Yan, H., & Zhu, Y. (2023, March). The application of boundary element method for the solution of the inverse heat conduction. In Journal of Physics: Conference Series, 2441(1), 012019.IOP Publishing.
[79]. Weng, Q. (2010). Remote Sensing and GIS Integration: Theories, Methods, and Applications.
McGraw-Hill Education
[81]. Worboys, M., & Duckham, M. (2006). Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science, 20(10), 1087–1108.
[82].
Xie, D., Li, F., Yao, B., Li, G., Zhou, L., & Guo, M. (2016,
June). Simba: Efficient in-memory spatial analytics. In Proceedings of the 2016 International Conference on Management of Data (pp. 1071-1085).
[85].
Yao, X., Li, G., Xia, J., Ben, J., Cao, Q., Zhao, L., &
Zhu, D. (2019). Enabling the big earth observation data via cloud computing and DGGS: Opportunities and challenges. Remote Sensing, 12(1), 62.
[86].
Yu, B., Cao, G., Huo, W., Zhou, H., & Atroshchenko, E. (2021). Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources. Journal of Computational and Applied Mathematics, 385, 113197.
[88].
Zhou, G., Pan, Q., Yue, T., Wang, Q., Sha, H., Huang, S., & Liu, X. (2018). Vector and raster data storage based on Morton code. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 2523-2526.