Literature Survey on Development of a Model for Detecting Emotions Using CNN and LSTM

Shashwat Singh*
Periodicity:July - September'2024

Abstract

In this paper, our focus revolved around the utilization of three significant datasets: SAVEE, Toronto Emotion Speech Set (TESS), and CREMA-D, together encompassing a vast repository of 75,000 samples. These datasets encapsulate a wide spectrum of human emotions, ranging from Anger, Sadness, Fear, and Disgust to Calm, Happiness, Neutral states, and Surprises, which are mapped to numerical labels from 1 to 8, respectively. Our project's central objective was the development of a realtime deep learning system specifically tailored for emotion recognition using speech inputs sourced from a PC microphone. The primary aim was to engineer a robust model capable of not only capturing live speech but also intricately analyzing audio files, thereby enabling the system to discern and classify specific emotional states.To achieve this goal, we opted for the Long Short-Term Memory (LSTM) network architecture, a specialized form of artificial Recurrent Neural Network (RNN). The decision to employ LSTM was driven by its proven track record in delivering heightened accuracy when tasked with speech-centric emotion recognition endeavors. Our model underwent rigorous training using the RAVDEES dataset, a rich repository housing 7,356 distinct audio files. Leveraging this dataset, we strategically selected 5,880 files for training purposes, a meticulous approach aimed at bolstering accuracy and ensuring the model's efficacy in detecting and recognizing emotions across a diverse array of speech samples. The culmination of our efforts resulted in a commendable training dataset accuracy of 83%, marking a significant milestone in the advancement of speech-based emotion recognition systems.

Keywords

Long Short Term Memory (LSTM),Convolutional Neural Network(CNN) Recurrent neural network, RAVDEES ,CREMA-D ,TESS, SAVEE data set

How to Cite this Article?

References

If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.