References
[1]. Abraham, I., Malkhi, D., Nayak, K., Ren, L., & Spiegelman, A. (2017). Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. Cryptology ePrint Archive.
[2]. Augusto, M. M. (2021). Forex Trading Strategy Mistakes. BurstWiki.
[3]. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., & Wuille, P. (2014). Enabling Blockchain Innovations with Pegged Sidechains. BlockStream.
[4]. Bentov, I., Pass, R., & Shi, E. (2016). Snow White: Provably Secure Proofs of Stake. IACR Cryptology ePrint Archive.
[10]. Buchman, E. (2016). Tendermint: Byzantine Fault Tolerance in the Age of Blockchains (Doctoral dissertation, University of Guelph).
[11]. Cachin, C. (2016, July). Architecture of the hyperledger blockchain fabric. In Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 310 (4), 1-4.
[12].
Canetti, R., & Lichtenberg, A. (2018). Certifying
trapdoor permutations, revisited. In Theory of Cryptography: 16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018, Proceedings, Part I 16 (pp. 476-506). Springer International Publishing.
[13]. Castro, M., & Liskov, B. (1999, February). Practical Byzantine Fault Tolerance. In OsDI, 99 (1999), 173-186.
[14].
Chawla, N., Behrens, H. W., Tapp, D., Boscovic, D., & Candan, K. S. (2019, May). Velocity: Scalability improvements in block propagation through rateless erasure coding. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 447-454). IEEE.
[15].
Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., & Wattenhofer, R. (2016, February). On scaling decentralized blockchains: (A Position Paper). In International Conference on Financial Cryptography and Data Security (pp. 106-125). Springer Berlin Heidelberg.
[17].
Dai, X., Xiao, J., Yang, W., Wang, C., & Jin, H. (2019,
July). Jidar: A jigsaw-like data reduction approach without trust assumptions for bitcoin system. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (pp. 1317-1326). IEEE.
[18].
Dang, H., Dinh, T. T. A., Loghin, D., Chang, E. C., Lin, Q., & Ooi, B. C. (2019, June). Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data (pp. 123-140).
[19].
Decker, C., & Wattenhofer, R. (2015). A fast and scalable payment network with bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings 17 (pp. 3-18). Springer International Publishing.
[20]. Ding, M., Flaig, R. W., Jiang, H. L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828.
[25]. Eyal, I., Gencer, A. E., Sirer, E. G., & Van Renesse, R. (2016). {Bitcoin-NG}: A scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16) (pp. 45-59).
[26].
Fanti, G., Venkatakrishnan, S. B., Bakshi, S., Denby, B., Bhargava, S., Miller, A., & Viswanath, P. (2018). Dandelion++ lightweight cryptocurrency networking with formal anonymity guarantees. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(2), 1-35.
[30].
Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017, October). Algorand: Scaling byzantine agreements for cr yptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles (pp. 51-68).
[37]. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S. M., & Felten, E. W. (2018). Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium (USENIX Security 18) (pp. 1353-1370).
[39]. Klarman, U., Basu, S., Kuzmanovic, A., & Sirer, E. G. (2018). bloxroute: A scalable trustless blockchain distribution network whitepaper. IEEE Internet of Things Journal (pp. 1-15).
[40]. Kogias, E. K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., & Ford, B. (2016). Enhancing bitcoin security and performance with strong consistency via collective signing. In 25th Usenix Security Symposium (Usenix Security 16) (pp. 279-296).
[41].
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., & Ford, B. (2018, May). Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 583-598).IEEE.
[42]. Kusmierz, B. (2017). The first glance at the simulation of the Tangle: Discrete model. IOTA Found WhitePaper (pp. 1-10).
[43]. LeMahieu, C. (2018). Nano: A Feeless Distributed Cryptocurrency Network. Nano.
[44]. Lerner, S. D. (2015). Dagcoin: A Cryptocurrency without Blocks. Bitslog.
[45].
Lewenberg, Y., Sompolinsky, Y., & Zohar, A. (2015). Inclusive block chain protocols. In Financial Cryptography and Data Security: 19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19 (pp. 528-547). Springer Berlin Heidelberg.
[46].
Li, C., Li, P., Zhou, D., Xu, W., Long, F., & Yao, A. (2018).
Scaling nakamoto consensus to thousands of transactions per second. arXiv preprint arXiv:1805.03870.
[47].
Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2020). A
survey on the security of blockchain systems. Future Generation Computer Systems, 107, 841-853.
[49].
Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016, October). A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 17-30).
[50]. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., & Maffei, M. (2018). Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability. Cryptology ePrint Archive.
[51]. Mariem, S. B., Casas, P., & Donnet, B. (2018, December). Vivisecting blockchain P2P networks: Unveiling the Bitcoin IP network. In ACM CoNEXT Student Workshop, 2018, 1-3.
[53].
Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., & McCorry, P. (2019, February). Sprites and state channels: Payment networks that go faster than lightning. In International Conference on Financial Cryptography and Data Security (pp. 508-526). Springer International Publishing.
[54]. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Satoshi Nakamoto.
[57].
Naumenko, G., Maxwell, G., Wuille, P., Fedorova, A., & Beschastnikh, I. (2019, November). Erlay: Efficient transaction relay for bitcoin. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (pp. 817-831).
[59]. Pass, R., & Shi, E. (2016). Hybrid Consensus: Efficient Consensus in the Permissionless Model. Cryptology ePrint Archive.
[61]. Poon, J., & Buterin, V. (2017). Plasma: Scalable autonomous smart contracts. White Paper (pp. 1-47).
[62]. Poon, J., & Dryja, T. (2016). The bitcoin lightning
network: Scalable off-chain instant payments. Lightning Network (pp. 1-59).
[66].
Sapirshtein, A., Sompolinsky, Y., & Zohar, A. (2017).
Optimal selfish mining strategies in bitcoin. In Financial Cryptography and Data Security: 20th International Conference, FC 2016, Christ Church, Barbados, February 22–26, 2016, Revised Selected Papers 20 (pp. 515-532). Springer Berlin Heidelberg.
[67]. Scherer, M. (2017). Performance and Scalability of Blockchain Networks and Smart Contracts (Masters of thesis, Umea University).
[68]. Scherer, P. O., & Scherer, P. O. (2017). Computational Physics: Simulation of Classical and Quantum Systems. Springer.
[69].
Singh, A., Parizi, R. M., Han, M., Dehghantanha, A., Karimipour, H., & Choo, K. K. R. (2020). Public blockchains scalability: An examination of sharding and segregated witness. Blockchain Cybersecurity, Trust and Privacy (pp. 203-232).
[71]. Sompolinsky, Y., & Zohar, A. (2018). Phantom. IACR Cryptology ePrint Archive.
[72]. Sompolinsky, Y., Lewenberg, Y., & Zohar, A. (2016). Spectre: A Fast and Scalable Cryptocurrency Protocol. Cryptology ePrint Archive.
[73]. Swanson, R. A., & Chermack, T. J. (2013). Theory Building in Applied Disciplines. Berrett-Koehler Publishers.
[74].
Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., & Ford, B. (2017, May). Scalable bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP) (pp. 444-460). Ieee.
[75].
Syta, E., Tamas, I., Visher, D., Wolinsky, D. I., Jovanovic, P., Gasser, L. , & Ford, B. (2016, May). Keeping authorities" honest or bust" with decentralized witness cosigning. In 2016 IEEE Symposium on Security and Privacy (SP) (pp. 526-545). Ieee.
[78]. Wang, J. (2022). Txilm: Lossy Block Compression with Salted Short Hashing. Google Patents.
[79]. Wang, J., & Wang, H. (2019). Monoxide: Scale out blockchains with asynchronous consensus zones. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19) (pp. 95-112).
[85]. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 151(2014), 1-32.
[86]. Wood, G. (2016). Polkadot: Vision for a heterogeneous multi-chain framework. White Paper, 21(2327), 4662.
[90].
Zheng, P., Zheng, Z., Luo, X., Chen, X., & Liu, X. (2018b, May). A detailed and real-time performance monitoring framework for blockchain systems. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice
(pp. 134-143).
[91].
Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2018a). Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 14(4), 352-375.