References
[2]. Aziz, R., Verma, C. K., & Srivastava, N. (2017). Dimension reduction methods for microarray data: A review. AIMS Bioengineering, 4(2), 179-197.
[4]. Chen, F., & Jokinen, K. (2010). Speech Technology.
Springer.
[5]. Connor, J. D. O., & Arnold, G. F. (1973). Intonation of Colloquial English. Longman, London.
[6].
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1), 32-80.
[7].
de Velasco, M., Justo, R., Antón, J., Carrilero, M., & Torres, M. I. (2018, November). Emotion detection from speech and text. In IberSPEECH (pp. 68-71).
[8]. Deller Jr, J. R., Proakis, J. G., & Hansen, J. H. (1993). Discrete Time Processing of Speech Signals. Prentice Hall PTR.
[13]. Jurafsky, D. (2000). Speech and Language Processing. Pearson Education.
[15].
Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K., & Mahjoub, M. A. (2018). Speech emotion recognition: Methods and cases study. In Proceedings of the 10th International Conference on Agents and Artificial Intelligence, 1, 175-182.
[16].
Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., & Wrobel, M. R. (2014). Emotion recognition and its applications. Human-Computer Systems Interaction: Backgrounds and Applications 3, 51-62.
[17]. Kwon, O. W., Chan, K., Hao, J., & Lee, T. W. (2003,
September). Emotion recognition by speech signals. In
Interspeech (pp. 125-128).
[19]. Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long short term memory networks for anomaly detection in time series. In the European Symposium on Artificial Neural Networks.
[20]. Mitchell, T. M. (1997). Machine Learning. McGraw-hill, New York.
[24]. Peinado, A., & Segura, J. (2006). Speech Recognition over Digital Channels: Robustness and Standards. John Wiley & Sons.
[26]. Ramakrishnan, S. (2012). Recognition of emotion from speech: A review. Speech Enhancement, Modeling and Recognition-Algorithms and Applications, 7, 121-137.