References
[1].
Aamir, S., Rahim, A., Aamir, Z., Abbasi, S. F., Khan, M. S., Alhaisoni, M., ... & Ahmad, J. (2022). Predicting breast cancer leveraging supervised machine learning techniques. Computational and Mathematical Methods in Medicine, 2022(1), 5869529.
[5].
Alam, M., Samad, M. D., Vidyaratne, L., Glandon, A., & Iftekharuddin, K. M. (2020). Survey on deep neural networks in speech and vision systems. Neurocomputing, 417, 302-321.
[6].
Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699-140725.
[7].
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376.
[10].
Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-93.
[12]. Almaleki, W. S. A. (2020). Saudi International Students' Perceptions of the Utility of Artificial Intelligence and Intelligent Personal Assistant Tools in EFL Learning (Doctoral dissertation, Concordia University Chicago).
[14]. Amaratunga, D., & Cabrera, J. (2009). Exploration and Analysis of DNA Microarray and Protein Array Data. John Wiley & Sons.
[16].
Amiri, Z., Heidari, A., Darbandi, M., Yazdani, Y., Jafari Navimipour, N., Esmaeilpour, M., ... & Unal, M. (2023). The personal health applications of machine learning techniques in the internet of behaviors. Sustainability, 15(16), 12406.
[17]. Andrejevic, M., & Selwyn, N. (2022). Facial Recognition. John Wiley & Sons.
[18]. Anton, P. S., Silberglitt, R., & Schneider, J. (2001). The Global Technology Revolution: Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015. Rand Corporation.
[21].
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J.,
Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115.
[22].
Ascarza, E., Neslin, S. A., Netzer, O., Anderson, Z., Fader, P. S., Gupta, S., ... & Schrift, R. (2018). In pursuit of enhanced customer retention management: Review, key issues, and future directions. Customer Needs and Solutions, 5, 65-81.
[23]. Baker, N. G. (2022). Writing Identities of Prolific Research Writers (Doctoral dissertation, University of Otago).
[24].
Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., & Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing & Management, 59(6), 103061.
[25]. Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986(23-28), 2.
[27].
Beltrán, E. T. M., Gómez, Á. L. P., Feng, C., Sánchez, P.
M. S., Bernal, S. L., Bovet, G., ... & Celdrán, A. H. (2024). Fedstellar: A platform for decentralized federated learning. Expert Systems with Applications, 242, 122861.
[30]. BeVier, L. R. (1995). Information about individuals in the hands of government: Some reflections on mechanisms for privacy protection. William & Mary Bill of Rights Journal, 4, 455.
[35]. Blattberg, R. C., & Deighton, J. (1991). Interactive marketing: Exploiting the age of addressability. Sloan Management Review, 33(1), 5-15.
[36].
Borges, N. J., Navarro, A. M., Grover, A., & Hoban, J.
D. (2010). How, when, and why do physicians choose careers in academic medicine? A literature review. Academic Medicine, 85(4), 680-686.
[38]. Breckenridge, J., & Jones, D. (2009). Demystifying theoretical sampling in grounded theory research. Grounded Theory Review, 8(2), 112-126.
[40]. Brock, F. V., & Richardson, S. J. (2001). Meteorological Measurement Systems. Oxford University Press, USA.
[41].
Brown, K. F., Rumgay, H., Dunlop, C., Ryan, M., Quartly, F., Cox, A., ... & Parkin, D. M. (2018). The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. British Journal of Cancer, 118(8), 1130-1141.
[42].
Burkett, E., Martin-Khan, M. G., Scott, J., Samanta, M., & Gray, L. C. (2016). Trends and predicted trends in presentations of older people to Australian emergency departments: Effects of demand growth, population aging and climate change. Australian Health Review, 41(3), 246-253.
[44]. Cameron, I. T., & Hangos, K. (2001). Process Modelling and Model Analysis. Elsevier.
[45].
Cao, Z., Xu, S., Peng, H., Yang, D., & Zidek, R. (2021).
Confidence-aware reinforcement learning for self-driving cars. IEEE Transactions on Intelligent Transportation Systems, 23(7), 7419-7430.
[48].
Carracedo-Reboredo, P., Liñares-Blanco, J., Rodríguez-Fernández, N., Cedrón, F., Novoa, F. J., Carballal, A., ... & Fernandez-Lozano, C. (2021). A review on machine learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal, 19, 4538-4558.
[49].
Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. (2021). A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet of Things Journal, 8(18), 13849-13875.
[51]. Cheatham, B., Javanmardian, K., & Samandari, H. (2019). Confronting the risks of artificial intelligence. McKinsey Quarterly, 2(38), 1-9.
[53].
Chen, H. Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., ... & Li, G. (2009). Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 3(11), 649-653.
[54]. Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. The Journal of Machine Learning Research, 5, 913-939.
[55]. Choudhuri, S. (2014). Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools. Elsevier.
[56].
Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), 492.
[57]. Clare, E. (2015). Exile and Pride: Disability, Queerness, and Liberation. Duke University Press.
[59].
Colledani, M., Tolio, T., Fischer, A., Iung, B., Lanza, G., Schmitt, R., & Váncza, J. (2014). Design and management of manufacturing systems for production quality. Cirp Annals, 63(2), 773-796.
[61].
Cornejo, J., Cornejo, J., Vargas, M., Carvajal, M.,
Perales, P., Rodríguez, G., ... & Elli, E. F. (2024). SY-MIS project: Biomedical design of endo-robotic and laparoscopic training system for surgery on the earth and space. Emerging Science Journal, 8(2), 372-393.
[62].
Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., & Xing, E. P. (2016, April). GeePS: Scalable deep learning on distributed GPUS with a GPU-specialized parameter server. In Proceedings of the Eleventh European Conference on Computer Systems (pp. 1-16).
[64]. Davison, A. J. (1999). Mobile robot navigation using active vision. Advances in Scientific Philosophy Essays in Honour of, 48.
[65]. DeVol, R. C., Bedroussian, A., Babayan, A., Frye, M.,
Murphy, D., Philipson, T. J., ... & Yeo, B. (2006). Mind to Market: A Global Analysis of University Biotechnology Transfer and Commercialization (p. 55). Santa Monica, CA: Milken Institute.
[66].
Dias, J. L., Sott, M. K., Ferrão, C. C., Furtado, J. C., & Moraes, J. A. R. (2021). Data mining and knowledge discovery in databases for urban solid waste management: A scientific literature review. Waste Management & Research, 39(11), 1331-1340.
[68].
Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., ... & Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66, 102542.
[70]. Efron, S., Shatz, H. J., Chan, A., Haskel, E., Morris, L. J., & Scobell, A. (2019). The Evolving Israel-China Relationship. Santa Monica, CA: Rand Corporation.
[74].
Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, 102419.
[75]. Florensa, C., Held, D., Geng, X., & Abbeel, P. (2018, July). Automatic goal generation for reinforcement learning agents. In International Conference on Machine Learning (pp. 1515-1528). PMLR.
[79].
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., ... & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514.
[81]. Gonzalez, K. (2023). Enhanced Monte Carlo Tree Search in Game-Playing AI: Evaluating Deepmind's Algorithms (Master thesis, Royal Military College of Canada).
[83]. Grant, T. D. (1999). The Recognition of States: Law and Practice in Debate and Evolution. Bloomsbury Publishing USA.
[86].
Guzzo, R. A., Fink, A. A., King, E., Tonidandel, S., & Landis, R. S. (2015). Big data recommendations for industrial–organizational psychology. Industrial and Organizational Psychology, 8(4), 491-508.
[87]. Hall, E. (1979). Computer Image Processing and Recognition. Elsevier.
[88]. Hall, M. A. (1999). Correlation-Based Feature Selection for Machine Learning (Doctoral dissertation, The University of Waikato).
[90]. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 485-585.
[92]. Helfer, L. R. (2004). Regime shifting: The TRIPs agreement and new dynamics of international intellectual property lawmaking. Yale Journal of International Law, 29, 1.
[96]. Horowitz, M. C., Allen, G. C., Saravalle, E., Cho, A., Frederick, K., & Scharre, P. (2022). Artificial Intelligence and International Security. Center for a New American Security.
[97].
Hussain, M., Zhu, W., Zhang, W., Abidi, S. M. R., & Ali,
S. (2019). Using machine learning to predict student difficulties from learning session data. Artificial Intelligence Review, 52, 381-407.
[98].
Ismail, L., Materwala, H., Al Hammadi, Y., Firouzi, F., Khan, G., & Azzuhri, S. R. B. (2022). Automated artificial intelligence-enabled proactive preparedness real-time system for accurate prediction of COVID-19 infections-Performance evaluation. Frontiers in Medicine, 9, 871885.
[100]. Jadhav, R. J., & Pawar, U. T. (2011). Churn prediction in telecommunication using data mining technology. International Journal of Advanced Computer Science and Applications, 2(2), 17-19.
[106]. Jones, T. O., & Sasser, W. E. (1995). Why satisfied customers defect. Harvard Business Review, 73(6), 88.
[108]. Kaplan, R. S., & Norton, D. P. (2002). The Strategy-Focused Organization: How Balanced Scorecard Companies Thrive in the New Business Environment (Vol. 2). Harvard Business school press, Boston, MA.
[109]. Karsh, B. T. (2009). Clinical Practice Improvement and Redesign: How Change in Workflow Can be supported by Clinical Decision Support. AHRQ Publication.
[110]. Khan, B. U. I., Olanrewaju, R. F., Baba, A. M., Langoo, A. A., & Assad, S. (2017). A compendious study of online payment systems: Past developments, present impact, and future considerations. International Journal of Advanced Computer Science and Applications, 8(5), 256-271.
[112]. Kim, M., Yu, S., Kim, S., & Moon, S. M. (2023).
DepthFL: Depthwise federated learning for heterogeneous clients. In The Eleventh International Conference on Learning Representations.
[113].
Kim, W., Jeong, O. R., Kim, C., & So, J. (2011). The
dark side of the Internet: Attacks, costs and responses. Information Systems, 36(3), 675-705.
[114]. Kimmel, A. J. (2010). Connecting with Consumers: Marketing for New Marketplace Realities. Oxford University Press.
[115].
Klein, S., Burke, L. E., Bray, G. A., Blair, S., Allison, D.
B., Pi-Sunyer, X., ... & Eckel, R. H. (2004). Clinical implications of obesity with specific focus on cardiovascular disease: A statement for professionals from the American heart association council on nutrition, physical activity, and metabolism: Endorsed by the American college of cardiology foundation. Circulation, 110(18), 2952-2967.
[116]. Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big Ideas behind Reliable, Scalable,
and Maintainable Systems. " O'Reilly Media, Inc.".
[117].
Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihok, G., & Den Hartog, D. N. (2018). Text classification for organizational researchers: A tutorial. Organizational Research Methods, 21(3), 766-799.
[118]. Kon, M. (2004). Customer churn. Stop before it starts, Mercer Management Journal (MMJ), 17, 54-60.
[123]. Kumar, M., & Kumar, S. (2024). Short literature survey on fiber-reinforced hybrid composites. Mechanics of Advanced Composite Structures, 11(2), 425-452.
[124]. Kumar, N. (2004). Marketing as Strategy: Understanding the CEO's Agenda for driving Growth and Innovation. Harvard Business Press.
[125]. Kumar, R., & Kumar, S. (2022). Overview of 3D-printing technology: Types, applications, materials and post processing techniques. In Additive Manufacturing with Medical Applications (pp. 265-289). CRC Press.
[126].
Kumar, R., Kumar, M., Chohan, J. S., & Kumar, S. (2022). Overview on metamaterial: History, types and applications. Materials Today: Proceedings, 56, 3016-3024.
[127].
Kumar, R., Kumar, S., Kumar, M., & Luthra, G. (2024). Approaches for the synthesis of nanomaterials, historical development and applications in different sectors: A review. Nanomedicine & Nanotechnology, 9(1), 1-10.
[128].
Kumar, R., Thakur, H., Kumar, M., Luthra, G., & Kumar, S. (2023). Corrosion and wear behavior of metal matrix composites. i-manager's Journal on Future Engineering & Technology, 18(3), 38-53.
[131]. Lee, Y., Yang, J., & Lim, J. J. (2019). Learning to coordinate manipulation skills via skill behavior diversification. In International Conference on Learning Representations (pp. 1-12).
[132]. Lehmann, M. (2020). Global rules for a global market place?-Regulation and supervision of Fintech providers. BU Int'l LJ, 38, 118.
[133]. Levchak, S. (2016). Robotic Literacy Learning Companions: Exploring Student Engagement with a Humanoid Robot in an Afterschool Literacy Program. New Jersey City University.
[134].
Li, X., Nie, L., Liu, M., Cheng, W., Zhu, H., Wu, X., &
Zhan, D. (2024). S2c-Har: A semi-supervised human activity recognition framework based on contrastive learning. Available at SSRN 4710949.
[135].
Lin, F. P. C., Hosseinalipour, S., Azam, S. S., Brinton,
C. G., & Michelusi, N. (2021). Semi-decentralized federated learning with cooperative D2D local model aggregations. IEEE Journal on Selected Areas in Communications, 39(12), 3851-3869.
[138]. Liu, J. (2001). Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-Organization and Adaptive Computation. World Scientific.
[139].
Lopez-Cantu, D. O., Wang, X., Carrasco-Magallanes, H., Afewerki, S., Zhang, X., Bonventre, J. V., & Ruiz-Esparza, G. U. (2022). From bench to the clinic: The path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Letters, 14(1), 41.
[142].
Lwakatare, L. E., Raj, A., Crnkovic, I., Bosch, J., & Olsson, H. H. (2020). Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions. Information and Software Technology, 127, 106368.
[145]. MacKenzie, D. A. (1998). Knowing Machines: Essays on Technical Change. Mit Press.
[149].
Mduluza, T., Midzi, N., Duruza, D., & Ndebele, P. (2013). Study participants incentives, compensation and reimbursement in resource-constrained settings. BMC Medical Ethics, 14, 1-11.
[151]. Mehta, N., Steinman, D., & Murphy, L. (2016). Customer Success: How Innovative Companies are Reducing Churn and Growing Recurring Revenue. John Wiley & Sons.
[152]. Merrick, K. E., & Maher, M. L. (2009). Motivated Reinforcement Learning: Curious Characters for Multiuser Games. Springer Science & Business Media.
[156].
Mohan, R., Saxena, N. V., Shrivastava, A., Sharma,
P. K., Choubey, A., & Kumar, S. (2023). Performance optimization and numerical analysis of boiler at husk fuel based thermal power plant. In E3S Web of Conferences, 405, 02010. EDP Sciences.
[158].
Mosali, J., Desta, K., Teal, R. K., Freeman, K. W., Martin, K. L., Lawles, J. W., & Raun, W. R. (2006). Effect of foliar application of phosphorus on winter wheat grain yield, phosphorus uptake, and use efficiency. Journal of Plant Nutrition, 29(12), 2147-2163.
[159].
Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S., & Varkonyi-Koczy, A. R. (2019). State of the art of machine learning models in energy systems, a systematic review. Energies, 12(7), 1301.
[161]. Mulligan, D. K., & Bamberger, K. A. (2019). Procurement as policy: Administrative process for machine learning. Berkeley Technology Law Journal, 34, 773.
[163]. Myatt, G. J., & Johnson, W. P. (2009). Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications (Vol. 2). John Wiley & Sons.
[164].
Myszczynska, M. A., Ojamies, P. N., Lacoste, A. M.,
Neil, D., Saffari, A., Mead, R., ... & Ferraiuolo, L. (2020). Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, 16(8), 440-456.
[165].
Nayarisseri, A., Khandelwal, R., Tanwar, P., Madhavi, M., Sharma, D., Thakur, G., ... & Singh, S. K. (2021). Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Current Drug Targets, 22(6), 631-655.
[166]. Nazim, T., Abid, M. D., & Mamun, J. H. (2020).
Prediction of Epileptic Seizure Onset Based on EEG Signals and Learning Approaches (Doctoral dissertation, Brac University).
[168].
Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., ... & Ahmad, B. B. (2020). Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. International Journal of Environmental Research and Public Health, 17(8), 2749.
[169].
Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016).
Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66.
[171]. Nygård, R. (2019). AI-Assisted Lead Scoring (Master's Thesis, Faculty of Social Sciences, Business and Economics, Åbo Akademi University).
[172].
Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., & Willett, R. (2020). Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in Information Theory, 1(1), 39-56.
[173]. Ott, L. (2014). Unsupervised Learning for Long-Term Autonomy (Doctoral dissertation, University of Sydney).
[177].
Parashar, A., Parashar, A., Ding, W., Shabaz, M., & Rida, I. (2023). Data preprocessing and feature selection techniques in gait recognition: A comparative study of machine learning and deep learning approaches. Pattern Recognition Letters, 172, 65-73.
[178]. Perrier, A. (2017). Effective Amazon Machine Learning. Packt Publishing Ltd.
[179].
Petropoulos, A., Siakoulis, V., Stavroulakis, E., Lazaris, P., & Vlachogiannakis, N. (2022). Employing google trends and deep learning in forecasting financial market turbulence. Journal of Behavioral Finance, 23(3), 353-365.
[180].
Pham, B. T., Jaafari, A., Avand, M., Al-Ansari, N.,
Dinh Du, T., Yen, H. P. H., ... & Tuyen, T. T. (2020).
Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry, 12(6), 1022.
[181]. Phillips, J. J. (2012). Return on Investment in Training and Performance Improvement Programs. Routledge.
[183]. Pitso, T. (2013). The creativity model for fostering greater synergy between engineering classroom and industrial activities for advancement of students' creativity and innovation. The International Journal of Engineering Education, 29(5), 1136-1143.
[184].
Podsakoff, P. M., Bommer, W. H., Podsakoff, N. P., & MacKenzie, S. B. (2006). Relationships between leader reward and punishment behavior and subordinate attitudes, perceptions, and behaviors: A meta-analytic review of existing and new research. Organizational Behavior and Human Decision Processes, 99(2), 113-142.
[188]. Ramsden, J. (2018). Applied Nanotechnology: The Conversion of Research Results to Products. William Andrew.
[190]. Reichheld, F. F., & Sasser, W. E. (1990). Zero defections: Quality comes to services. 1990, 68(5), 105-111.
[192].
Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., ... & Cardoso, M. J. (2020). The future of digital health with federated learning. NPJ Digital Medicine, 3(1), 1-7.
[194]. Roy, R. K. (2001). Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons.
[195].
Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 1729881419839596.
[197]. Ruppert, T. (2018). Visual Analytics to Support Evidence-Based Decision Making (Doctoral dissertation, TU Darmstadt (TUPrints)).
[205].
Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data, 7, 1-29.
[206]. Saylor, M. J. (2013). The Mobile Wave: How Mobile Intelligence will Change Everything. Hachette+ ORM.
[207]. Schultz, M., Doerr, J. E., & Frederiksen, L. (2013). Professional Services Marketing: How the Best Firms Build Premier Brands, Thriving Lead Generation Engines, and Cultures of Business Development Success. John Wiley & Sons.
[208]. Schwartz, H. M. (2014). Multi-Agent Machine Learning: A Reinforcement Approach. John Wiley & Sons.
[211].
Sharma, M., Jindal, H., Kumar, S., & Kumar, R. (2022). Overview of data security, classification and control measure: A study. i-manager's Journal on Information Technology, 11(1), 17-34.
[216]. Singh, H., Kumar, S., & Singh, S. (2023). Influence of process parameters on electric discharge machining of DIN 1.2714 steel. In Recent Advances in Material, Manufacturing, and Machine Learning (pp. 400-410). CRC Press.
[219]. Siros, S. M. (1992). Borders, barriers, and other obstacles to a holistic environment. Northern Illinois University Law Review, 13, 633.
[222]. Stoian, N. A. (2020). Machine Learning for Anomaly Detection in IoT Networks: Malware Analysis on the Iot-23 Data Set (Bachelor's thesis, University of Twente).
[223]. Sujata, D., Pani, S. K., Rodrigues, J. J. P. C., Majhi, B. (2022). Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics: Techniques and Applications. CRC Press.
[228].
Thapa, C., Arachchige, P. C. M., Camtepe, S., & Sun, L. (2022, June). Splitfed: When federated learning meets split learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 36(8), 8485-8493.
[231]. Trivedi, N. K., Simaiya, S., Lilhore, U. K., & Sharma, S.
K. (2020). An efficient credit card fraud detection model based on machine learning methods. International Journal of Advanced Science and Technology, 29(5), 3414-3424.
[242].
Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan,
H. B., Al-Shedivat, M., ... & Zhu, W. (2021). A field guide to federated optimization. arXiv preprint arXiv:2107.06917.
[243].
Wang, Z., Xia, L., Yuan, H., Srinivasan, R. S., & Song,
X. (2022). Principles, research status, and prospects of feature engineering for data-driven building energy prediction: A comprehensive review. Journal of Building Engineering, 58, 105028.
[246]. Wilson, M., Kannangara, K., Raguse, B., Simmons, M., & Smith, G. (2002). Nanotechnology: Basic Science and Emerging Technologies. Chapman & Hall/CRC.
[249].
Yao, Y., Xiao, Z., Wang, B., Viswanath, B., Zheng, H., & Zhao, B. Y. (2017, November). Complexity vs. performance: Empirical analysis of machine learning as a service. In Proceedings of the 2017 Internet Measurement Conference (pp. 384-397).
[250].
Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C. L., & Grundmann, M. (2020). Mediapipe hands: On-device real-time hand tracking. arXiv preprint arXiv:2006.10214.
[251].
Zhang, P. Z., Shen, Z., Wang, M., Gan, W., Burgmann, R., Molnar, P., ... & Xinzhao, Y. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809-812.