References
[1]. Jackson, C. E. (1973, December). Fluxes and slag in welding. WRC Bulletin, No.190.
[2]. Tuliani, S.S., Boniszewski, & Eaton, N.F. (1969, February). Notch toughness of commercial submerged arc weld metal. Weld Met. Vol.8, 327-339.
[3]. Visvanath, P. S. Submerged arc welding fluxes. Advani-Oerlinkon Technical.
[4]. Lewis, W. J., Faulkner, G. E., & Rieppel, P. J. (1961, August). Flux and filler –wire developments for submerged –arc welding HY-80 steel. Welding Journal, 337s- 345s.
[5]. Pokhodnya, I. K., & Kostenko, B. A. (1965). Fusion of electrode metal and its Interaction with the slag during submerged arc welding. Avt. Svarka, No.10.16- 22.
[6]. Bennet, A. P., & Stanley, P. J. (1966, February). Fluxes for the submerged-arc-welding of Q.T.35 steel. British Welding Journal, 59-66.
[7]. Butler, C. A., & Jackson, C. E. (1967, April). Submerged arc welding characteristics of the CaO-TiO2 - SiO21. system. Welding Journal, 448s-455s.
[8]. Bennet, A. P. (1970, December). Metallurgy using basic fluxes. Metal Construction and British Welding Journal, 523-527.
[9]. Colvin, P. (1970, February). Basic submerged –arc welding fluxes. Metallurgia, 45-50.
[10]. Drayton, P. A. (1972). An examination of the influence of process parameters on submerged arc welding. Welding Research International, Vol.2,1-19.
[11]. Ivochkin., & Alekseev, A. I. (1972). Automatic submerged arc welding using filler metal in powder form. Svar. Proiz., Vol.2, 26-30.
[12]. Palm, J. H. (1972, July). How fluxes determine the metallurgical properties of submerged arc welds. Welding Journal, 358s- 360s.
[13]. Potapov, N. N., & Babin, S. A. (1974). Special features of the transfer of alloying elements into the metal in deposition under a fused agglomerated flux. Svar. Proiz., Vol.3, 22-25.
[14]. Sorokin, L. I., & Sidlin, Z. A. (1974). Transfer of elements from the electrode into the deposited metal. Svar. Proiz., Vol.5, 5-6.
[15]. Ferrera, K. P., & Olson, D. L. (1975, July). Performance of the MnO-SiO2 1. CaO system as a welding flux. Welding Journal, 211s-215s.
[16]. Wittstock, G. G. (1976, September). Selecting submerged arc fluxes for carbon and low alloy steels. Welding Journal, 733-741.
[17]. Eagar, T. W. (1978, March). Sources of weld metal oxygen contamination during submerged arc welding. Welding Journal.
[18]. Potapov, N. N., & Kurlanov, S. A. (1978). Quantitative evaluation of the basicity of welding fluxes. Svar. Proiz., Vol.9,4-7.
[19]. North, T. H., Bell, H. B., Nowicki, A., & Craig, I. (1978, March). Slag/Metal interaction oxygen and toughness in submerged arc welding. Welding Journal, 63s-75s.
[20]. Charles, H., & Entrekin, J. R. (1979). The influence of flux basicity on weld –metal microstructure. Metallography, Elsevier, 295-312.
[21]. Schwemmer, D. D., Olson, D. L., & Williamson D. L. (1979, May). The relationship of weld penetration to the welding flux. Welding Journal, 153s- 160s.
[22]. Koukabi, A. H. (1979, December). Properties of submerged arc deposits-effects of zirconium, vanadium and titanium/Boron. Metal Construction, 639-642.
[23]. Chai, C. S., & Eagar, T. W. (1980, March). The effect of SAW parameters on weld metal chemistry. Welding Journal, 93s- 98s.
[24]. Davis, M. L. E., & Bailey, N. (1980, April). How submerged arc flux composition influences element transfer. Conference on Weld-Pool Chemistry and Metallurgy. the Welding Institute U.K., Paper-34, 289-310.
[25]. Slivinskii, A. M., Kopersak, V. N., Solokha, A. M., & Yushchenko, K. A. (1981). The physico-chemical and technological properties of CaF2- SiO2- Al2O3-MgO flux systems. Avt. Sevarka, No.7, 31-35.
[26]. Podgaetskii, V. V., & Galinich, V. I. (1981). The structure of molten welding slags. Avt. Sevarka, No.7, 36-45.
[27]. Davis, M. L. E., & Bailey, N. (1982, April). Properties of submerged arc fluxes- a fundamental study. Metal Construction, 202-209.
[28]. Chai, C. S., & Eager, T. W. (1982, July). Slag metal reactions in binary CaF2 -1.metal oxide welding fluxes. Welding Journal, 230s -232s.
[29]. Snyder, J. P., & Pense , A. W. (1982, July). The effects of titanium on submerged arc weld metal. Welding Journal, 201s-211s.
[30]. Terashima, H., & Tsuboi, J. (1982, December), Submerged arc flux for low oxygen and hydrogen weld metal. Metal Construction, 648-654.
[31]. Kohno, R., Takami, T., Mori, N., & Nagano K. (1982, December). New fluxes of improved weld metal toughness for HSLA steels. Welding Journal, 373s-380s.
[32]. Potapov, N. N. (1983). Calculating the principal reactions between slag and metal in submerged arc welding. Automatic Welding, Avt. Svarka, No.2, 29-31.
[33]. Davis, M. L. E., Pargeter, R. J., & Bailey, N. (1983, June). Effects of titanium and boron additions to submerged arc welding fluxes. Metal Construction, 338-344.
[34]. Indacochea, J. E., & Olson, D. L. (1983, December). Relationship of weld-metal microstructure and penetration to weld-metal oxygen content. Materials for Energy Systems, Vol.5. No.3, 139-148.
[35]. Mitra, U., & Eager. T. W. (1984, January). Slag metal reactions during submerged arc welding of alloy steels, Metallurgical Transactions A, Volume 15A, 217-227.
[36]. Lau, T., Weatherly, G. C., & McLean, A. (1985, December). The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2 O3 1.based fluxes. Welding Journal, 343s-347s.
[37]. Lau, T., Weatherly, G. C., & McLean, A. (1986, February). Gas/metal/slag reactions in submerged arc welding using CaO-Al2O3 based fluxes. Welding Journal, 31s.
[38]. Tandon, S., Kaushal, G. C., & Gupta, S. R. (1988, September). Effect of flux characteristics on HAZ during submerged arc welding. Int. Conf. on welding Technology, University of Roorkee, India, II-65-II-71.
[39]. Burck, P. A., Indacochea, J. E., & Olson, D. L. (1990, March). Effects of welding flux additions on 4340 steel weld metal composition. Welding Journal, 115s-122s.
[40]. Mitra, U., & Eagar, T. W. (1991). Slag-metal reactions during welding: part I. Metallurgical Transactions B, Vol. 22B, 65-71.
[41]. Mitra, U., & Eagar, T. W. (1991). Slag-metal reactions during welding: part II, Metallurgical Transactions B, Vol. 22B, 73-81.
[42]. Mitra, U., & Eagar, T. W. (1991). Slag-metal reactions during welding: part III, Metallurgical Transactions B, Vol. 22B, 83-100.
[43]. Gupta, S. R., & Arora, Navneet. (1991, July). Influence of flux basicity on weld bead geometry and HAZ in submerged arc welding. Indian Welding Journal, 127-133.
[44]. Pandey, N. D., Bharti, A., & Gupta, S. R. (1994). Effect of submerged arc welding parameters and fluxes on element transfer behavior and weld-metal chemistry. Journal of Materials Processing Technology 40, 195-211.
[45]. Paniagua, Ana. Ma., Estrada-Diaz, Paulino., & Lopez-Hirata, Victor, M. (2003). Chemical and structural characterization of the crystalline phases in agglomerated fluxes for submerged-arc welding. Journal of Materials Processing Technology 141, 93-100
[46]. Paniagua-Mercado, Ana, Ma, Lopez-Hirata, Victor M., & Munoz, Maribel, L. (2005). Influence of the chemical composition of flux on the microstructure and tensile properties of submerged-arc welds. Journal of Materials processing Technology169, 93-100.
[47]. Kanjilal, P., Pal, T. K., & Majumdar, S. K. (2006). Combined effect of flux and welding parameters on chemical composition and mechanical properties of Submerged-arc weld metal. Journal of Materials Processing Technology 171, 223-231.
[48]. Kanjilal, P., Pal, T. K., & Majumdar, S. K. (2007, May). Prediction of element transfer in submerged arc welding. Welding Journal, Vol.86, 135s -146s.
[49]. Adeyeye, A. D., & Oyawale, Festus, A. (2008, October-December). Mixture experiments and their applications in welding flux design. Journal of the Braz. Soc. of Mechanical Science & Engg., Vol. 30, No.4, 319- 326.
[50]. Sharma, Abhay., Arora, Navneet., & Mishra, Bhanu. K. (2008). Mathematical modeling of flux consumption during twin-wire welding. Int J Adv Manuf Technology, 1114-1124.
[51]. Sahni, V., Singh, Kulwant., & Pandey, S. (2009). Waste to wealth: Reuse of slag as a flux in submerged arc welding. Asian Journal of chemistry, Vol. 21, No.10, S072-075.
[52]. Bang, Kook-soo., Chan, Park., Jung, Hong-chul., & Lee, Jong-bong. (2009). Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding. Met. Mater. Int., Vol.15, No.3, 471-477.
[53]. Kumar, P., Batish, A., Bhattacharya, A., & Duvedi, R.K. (2011, July). Effect of process parameters on microhardness of heat affected zone in submerged arc welding. Proceedings of the Institution of mechanical Engineers, part B: Journal of Engineering Manufacture, Vol.225, 711-721.
[54]. Kumar, Vinod. (2011, October). Modeling of weld bead geometry and shape relationship in submerged arc welding using developed fluxes. Jordan Journal of Mechanical and Industrial Engineering, Vol.5, No. 5, 461-470.
[55]. Cochran, G., & Cox, G. M. (1962). Experimental design, Asia Publishing House, New Delhi.
[56]. Douglas, C. M. (2007). Design and analysis of experiments, fifth ed., John Wiley, 427-440.