Simulation of P&O Algorithm MPPT With Output Sensing Direct Control Method Using Cuk Converter

Mukesh Gupta*, Rohit Jain**
* Associate Professor, Department of Electronic Instrumentation & Control Engineering, Jagannath Gupta Institute of Engineering & Technology, Jaipur, Rajasthan, India
** Professor, Department of Physics, Jagannath Gupta Institute of Engineering & Technology, Jaipur, Rajasthan, India.
Periodicity:November - January'2013
DOI : https://doi.org/10.26634/jic.1.1.2079

Abstract

In this paper, the MPPT (Maximum Power Point Tracking) with resistive load is implemented in MATLAB with output sensing direct control method using Cuk converter. The simulated system consists of the BP SX 150S photovoltaic (PV) module, the ideal Cuk converter, the MPPT control, and the resistive load (6?). The selection of the purturb & observe (P&O) algorithm permits the use of output sensing control method which eliminates the input voltage and current sensors. The direct control method adjusts of duty cycle within the MPP tracking algorithm. The way to adjust the duty cycle is totally based on the theory of load matching. When the value of Rload matches with that of Ropt, the maximum power transfer from PV to the load will occur. These two are, however, independent and rarely matches in practice. The goal of the MPPT is to match the impedance of load to the optimal impedance of PV.

Keywords

P&O Algorithm, MPPT, Cuk Converter, PV Module, Direct Control Method, Resistive Load.

How to Cite this Article?

Mukesh K.R.Gupta and Rohit Jain (2013). Simulation Of P&O Algorithm MPPT With Output Sensing Direct Control Method Using Cuk Converter. i-manager’s Journal on Instrumentation and Control Engineering, 1(1), 25-31. https://doi.org/10.26634/jic.1.1.2079

References

[1]. Azadeh Safari and Saad Mekhilef, (2011). “Simulation & hardware implementation of incremental conductance MPPT with direct control method using Cuk converter,” IEEE Trans. on Ind. Electron., Vol. 58, No. 4, April, pp. 1154-1161.
[2]. R.-J. Wai, W.-H. Wang, and C.-Y. Lin, (2008). “Highperformance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, Jan., pp. 240-250.
[3]. W. Xiao, W. G. Dunford, P. R. Palmer, and A. Capel, (2007). “Regulation of photovoltaic voltage,” IEEE Trans. Ind. Electron., Vol. 54, No. 3, Jan., pp. 1365-1374.
[4]. N. Mutoh and T. Inoue, (2007). “A control method to charge series-connected ultra electric double-layer capacitors suitable for photovoltaic generation systems combining MPPT control method,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, Feb., pp. 374-383.
[5]. R. Faranda, S. Leva, and V. Maugeri, (2008). MPPT Techniques for PV System: Energetic and Cost Comparison. Milano, Italy: Elect. Eng. Dept. Poliecnico di Milano, pp. 1-6.
[6]. Z. Yan, L. Fei, Y. Jinjun, and D. Shanxu, (2008). “Study on realizing MPPT by improved incremental conductance method with variable step-size,” in Proc. IEEE ICIEA, Jun., pp. 547-550.
[7]. M. Buresh, (1983). Photovoltaic Energy System: Design and Installation. New York: McGraw-Hill. pp. 335.
[8]. Jing Jun Soon and Kay-Soon Low, (2012). “Photovoltaic model identification using particle swarn optimization with inverse barrier constraint,” IEEE Trans. On Power Electrn., Vol. 27, No. 9, September.
[9]. F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, (2008). “A variable step size INC MPTT method for PV system,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, July, pp. 2622-2628.
[10]. F. M. Gonzalez-Longatt, (2005). “Model of photovoltaic module in Matlab,” in 2do congreso iberoamericano de estudiantes de ingenieriacute; a electrica, electronic y computacion, ii cibelec, pp. 1-5.
[11]. A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, (2011). “High performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrods,” IEEE Trans. Power Electron., Vol. 26, No. 4, April, pp. 1010-1021.
[12]. Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and C. Y. Won, (2011). “A real maximum power tracking method for mismatching compensation in PV array under partially shaded conditions,” IEEE Trans. Power Electron., Vol. 26, No. 4, April, pp. 1001-1009.
[13]. L. Zhang, W. G. Hurley, and W. H. Wolfle, (2011). “A new approach to achieve maximum power point tracking for PV system with a variable inductor,” IEEE Trans. Power Electron. Vol. 26, No. 4, April, pp. 1031-1037.
[14]. L. Zhou, Y. Chen, and F. Jia, (2011). “New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search,” IEEE Trans. Power Electron., Vol. 26, No. 4, April, pp. 1038-1048.
[15]. S. Chun, A. Kwasinski, (2011). “Analysis of classical root-finding methods applied to digital maximum power point tracking for sustainable photovoltaic energy generation,” IEEE Trans. Power Electron., Vol. 26. No. 12, Dec., pp. 3730-3743.
[16]. T. L. Nguyen, K. S. Low, (2010). “A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic system,” IEEE Trans. Ind. Electron., Vol. 57, No. 10, Oct., pp. 3456-3467.
[17]. S. L. Brunton, C. W. Rowley, S. R. Kulkarni, and C. Clarkson, (2010). “Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control,” IEEE Trans. Power Electron., Vol. 24, No. 10, Oct., pp. 2531-2540.
[18]. C. Hua, J. Lin, and C. Shen, (1998). “Implementation of a DSP controlled photovoltaic system with peak power tracking,” IEEE Trans. Ind. Electron., Vol. 45, No. 1, Feb., pp. 99-107.
[19]. T. Noguchi, S. Togashi, and R. Nakamoto, (2002). “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Ind. Electron., Vol. 49, No. 1, Feb., pp. 217–223.
[20]. N. Mutoh, M. Ohno, and T. Inoue, (2006). “A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, June, pp. 1055–1065.
[21]. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, (2005). “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, No. 4, July, pp. 963–973.
[22]. N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, (2007). “Predictive & adaptive MPPT perturb and observe method,” IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 3, July, pp. 934–950.
[23]. E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, (2001). “Development of a microcontroller based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., Vol. 16, No. 1, Jan., pp. 46–54.
[24]. A. Pandey, N. Dasgupta, and A. K. Mukerjee, (2006). “Design issues in implementing MPPT for improved tracking and dynamic performance,” in Proc. 32nd IECON, Nov., pp. 4387–4391.
[25]. M. Vaigundamoorthi and R. Ramesh, (2011). “ZVSPWM active-clamping modified Cuk converter based MPPT for solar PV modules,” European Journal of Scientific Research, Vol. 58, No. 3, pp. 305-315.
[26]. Joe-Air Jiang, Tsong-Liang Huang, Ying-Tung Hsiao and Chia-Hong Chen, (2005). “Maximum Power Tracking for Photovoltaic Power Systems” Tamkang Journal of Science and Engineering, Vol. 8, No 2, pp. 147-153.
[27]. Trishan Esram and Patrick L. Chapman, (2007). “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques” IEEE Trans. on energy conversion, Vol. 22, No. 2, June, pp. 439-449.
[28]. E. J. Durán, M. Galán, Sidrach-de-Cardona, and J. Andújar, (2009). “Measuring the I-V Curve of Photovoltaic generators-analyzing different dc–dc converter topologies” IEEE ind. Electron. magazine, Sept., Pp.4-14.
[29]. K. K. Tse, M. T. Ho, Henry S.-H. Chung, and S. Y. Ron Hui, (2002). “A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation” IEEE Trans. on power Electron., Vol. 17, No. 6, Nov., pp .980-989.
[30]. Henry S.-H. Chung., K. K. Tse, S. Y. Ron Hui, C. M. Mok, and M. T. Ho, (2003). “A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter” IEEE Trans. on Power Electron., Vol. 18, No. 3, May, pp.717-724.
[31]. BP Solar BP SX150S, (2001). 150W Multi-crystalline Photovoltaic Module Datasheet.
[32]. Akihiro Oi, (2005). “Design and simulation of photovoltaic water pumping system,” September.
[33]. Taufik, (2004). EE410 Power Electronics- Lecture Note Cal Poly State University, San Luis Obispo.
[34]. D. Maksimovic and S. Cuk, (1991). “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron., Vol. 6, No. 3, July, pp. 476– 490.
[35]. K. K. Tse, B. M. T. Ho, H. S.-H. Chung, and S. Y. R. Hui, (2004). “A comparative study of maximum-power-point trackers for photovoltaic panels using switching-frequency modulation scheme,” IEEE Trans. Ind. Electron., Vol. 51, No. 2, April, pp. 410–418.
[36]. I.-S. Kim, M.-B. Kim, and M.-J. Youn, (2006). “New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, June, pp. 1027–1035.
[37]. W. Xiao, M. G. J. Lind, W. G. Dunford, and A. Capel, (2006). “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, June, pp. 1017–1026.
[38]. M. K. Gupta and Rohit Jain, (2012). “Design and simulation of photovoltaic system using advance MPPT”, International Journal of Advance Technology & Engg. Research, Vol. 2, July, pp. 73-76.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.