References
[1].
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V.,
Umar, A. M., Linus, O. U., ... & Kiru, M. U. (2019).
Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access, 7, 158820-158846.
[2]. Acharya, S. (2015). Popular Culture and English Language Learning: A Study among Youth in India (Doctoral dissertation, Department of Humanities and
Social Sciences National Institute of Technology, Rourkela, India).
[3]. Akerkar, R., & Sajja, P. (2009). Knowledge-Based Systems. Jones & Bartlett Publishers.
[6]. Atkinson, R. D. (2018). "It is going to kill us!" and other myths about the future of artificial intelligence. IUP Journal of Computer Sciences, 12(4), 7-56.
[17].
Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118.
[18]. Cipolla, R., Pentland, A., & Pentland, A. P. (Eds.). (1998). Computer Vision for Human- Machine Interaction. Cambridge university press.
[22].
Dong, Y., Hou, J., Zhang, N., & Zhang, M. (2020). Research on how human intelligence, consciousness, and cognitive computing affect the development of artificial intelligence. Complexity, 2020(1), 1680845.
[25]. Fang, J., Su, H., & Xiao, Y. (2018). Will artificial intelligence surpass human intelligence? SSRN (pp. 1-9).
[27]. Fetzer, J. H., & Fetzer, J. H. (1990). What is Artificial Intelligence? Springer Netherlands.
[28]. Fleming, S. M. (2021). Know Thyself: The New Science of Self-Awareness. Hachette UK.
[30]. Fulton, K. P. (2014). Time for Learning: Top 10 Reasons Why Flipping the Classroom Can Change Education. Corwin Press.
[33].
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., ... & Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things, 19, 100514.
[36].
Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., & Scheinberg, K. (2021). Optimal decision trees for categorical data via integer programming. Journal of Global Optimization, 81, 233-260.
[37].
Gupta, A., Anpalagan, A., Guan, L., & Khwaja, A. S. (2021). Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array, 10, 100057.
[40]. Hapke, H., Howard, C., & Lane, H. (2019). Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python. Simon and Schuster.
[41].
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (pp. 485-585).
[45].
Hooda, M., Rana, C., Dahiya, O., Rizwan, A., & Hossain, M. S. (2022). Artificial intelligence for assessment and feedback to enhance student success in higher education. Mathematical Problems in Engineering, 2022(1), 5215722.
[48].
Jindal, H., Kaur, A., Kumar, S., Gautam, N., & Kumar,
R. (2020). IOT based smart agriculture: A study. i- manager's Journal on Information Technology, 10(1), 31.
[51].
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274.
[53].
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713-3744.
[54]. Khuri, S., Bäck, T., & Heitkötter, J. (1994, March). An Evolutionary Approach to Combinatorial Optimization Problems. In ACM Conference on Computer Science (pp. 66-73).
[55].
Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yogamani, S., & Pérez, P. (2021). Deep reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4909-4926.
[58]. Kopetz, H., & Steiner, W. (2022). Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer Nature.
[59].
Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364.
[63].
Kruber, F., Wurst, J., Morales, E. S., Chakraborty, S., &
Botsch, M. (2019, June). Unsupervised and supervised learning with the random forest algorithm for traffic scenario clustering and classification. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 2463-2470). IEEE.
[64]. Kulkarni, P. (2012). Reinforcement and Systemic Machine Learning for Decision Making. John Wiley & Sons.
[67].
Kumar, R., Kumar, M., Chohan, J. S., & Kumar, S. (2022). Overview on metamaterial: History, types and applications. Materials Today: Proceedings, 56, 3016-
3024.
[71].
Kumar, S., Handa, A., Chawla, V., Grover, N. K., & Kumar, R. (2021). Performance of thermal-sprayed
coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: A review. Surface Engineering, 37(7), 833-860.
[76]. Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems (pp. 1-12).
[77]. Levy, M. (1997). Computer-Assisted Language Learning: Context and Conceptualization. Oxford University Press.
[80]. Luger, G. F. (1998). Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 5/E. Pearson Education India.
[81]. Lyons, J. (1972). Human Language. Non-Verbal Communication.
[82]. Marr, B. (2019). Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems. John Wiley & Sons.
[83]. Martin, S. M. (2019). Artificial Intelligence, Mixed Reality, and the Redefinition of the Classroom. Rowman & Littlefield.
[84].
McBee, M. P., Awan, O. A., Colucci, A. T., Ghobadi,
C. W., Kadom, N., Kansagra, A. P., ... & Auffermann, W. F. (2018). Deep learning in radiology. Academic Radiology, 25(11), 1472-1480.
[85].
McKnight, K., O'Malley, K., Ruzic, R., Horsley, M. K., Franey, J. J., & Bassett, K. (2016). Teaching in a digital age: How educators use technology to improve student learning. Journal of Research on Technology in Education, 48(3), 194-211.
[90]. Meyer-Baese, A., & Schmid, V. J. (2014). Pattern Recognition and Signal Analysis in Medical Imaging. Elsevier.
[91]. Milano, J., & Lembke, P. (2013). IBM System Blue Gene Solution: Blue Gene/Q hardware Overview and Installation Planning. IBM Redbooks.
[92]. Minsky, M. (2007). The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon and Schuster.
[93].
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2, 1-21.
[94]. Neumann, O. (2016). Beyond capacity: A functional view of attention. In Perspectives on Perception and Action. Routledge.
[97]. Olatunde-Aiyedun, T. G. (2024). Artificial Intelligence (AI) in education: Integration of AI into science education curriculum in Nigerian Universities. International Journal of Artificial Intelligence for Digital, 1(1), 1-14.
[98].
Oyelade, J., Isewon, I., Oladipupo, O., Emebo, O., Omogbadegun, Z., Aromolaran, O., ... & Olawole, O. (2019, July). Data clustering: Algorithms and its applications. In 2019 19th International Conference on Computational Science and its Applications (ICCSA) (pp. 71-81). IEEE.
[100]. Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development. UNESCO.
[102].
Peter Bonasso, R., James Firby, R., Gat, E., Kortenkamp, D., Miller, D. P., & Slack, M. G. (1997). Experiences with an architecture for intelligent, reactive agents. Journal of Experimental & Theoretical Artificial Intelligence, 9(2-3), 237-256.
[104].
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242-268.
[106]. Retto, J. (2017). Sophia, First Citizen Robot of the World. ResearchGate.
[107]. Rouhiainen, L. (2018). Artificial Intelligence: 101 Things You Must Know Today about Our Future. Lasse Rouhiainen.
[108]. Ryan, D. (2016). Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation. Kogan Page Publishers.
[109]. Sanchez, E. (Ed.). (2006). Fuzzy Logic and the Semantic Web. Elsevier.
[110].
Saravi, S., Kalawsky, R., Joannou, D., Rivas Casado, M., Fu, G., & Meng, F. (2019). Use of artificial intelligence to improve resilience and preparedness against adverse flood events. Water, 11(5), 973.
[112].
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel,
O. P., Tiwari, A., ... & Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664-681.
[117]. Sharma, M., Jindal, H., Kumar, S., & Kumar, R. (2021). Overview of data security, classification and control measure: A study. i-manager's Journal on Information Technology, 11(1), 1-17.
[119]. Shi, R., & Conrad, S. A. (2009). Correlation and regression analysis. Ann Allergy Asthma Immunol, 103(4), S34-S41.
[120]. Sloman, A., Chrisley, R., & Scheutz, M. (2005). The Architectural Basis of Affective States and Processes. Oxford University Press.
[121]. Sokoli, M. (2023). The Impact of Artificial Intelligence on Finance. International Business.
[123]. Song, Y., Schwing, A., & Urtasun, R. (2016, June). Training deep neural networks via direct loss minimization. In International Conference on Machine Learning (pp. 2169-2177). PMLR.
[127].
Suta, P., Lan, X., Wu, B., Mongkolnam, P., & Chan, J.
H. (2020). An overview of machine learning in chatbots. International Journal of Mechanical Engineering and Robotics Research, 9(4), 502-510.
[128].
Tedre, M., Toivonen, T., Kahila, J., Vartiainen, H., Valtonen, T., Jormanainen, I., & Pears, A. (2021). Teaching machine learning in K–12 classroom: Pedagogical and technological trajectories for artificial intelligence education. IEEE Access, 9, 110558-110572.
[132]. Tomlinson, C. A., Kaplan, S. N., Renzulli, J. S.,
Purcell, J. H., Leppien, J. H., Burns, D. E., ... & Imbeau, M.
B. (2008). The Parallel Curriculum: A Design to Develop Learner Potential and Challenge Advanced Learners. Corwin Press.
[136].
Viitaniemi, V., & Laaksonen, J. (2008). Techniques for image classification, object detection and object segmentation. In Visual Information Systems. Web-Based Visual Information Search and Management: 10th International Conference, VISUAL 2008, Salerno, Italy, September 11-12, 2008, Proceedings 10 (pp. 231-234). Springer Berlin Heidelberg.
[137]. Vlahos, J. (2019). Talk to Me: Amazon, Google, Apple and the Race for Voice-Controlled AI. Random House.
[139]. Webb, A. R. (2003). Statistical Pattern Recognition.
John Wiley & Sons.
[142].
Xu, D., Shi, Y., Tsang, I. W., Ong, Y. S., Gong, C., &
Shen, X. (2019). Survey on multi-output learning. IEEE Transactions on Neural Networks and Learning Systems, 31(7), 2409-2429.
[145].
Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49.
[148]. Zhu, X., & Goldberg, A. B. (2022). Introduction to Semi-Supervised Learning. Springer Nature.