Exploring the Optical and Structural Properties of Chromium (Cr)-Doped Polyaniline

Ankit Gupta*
Department of Physics, University of Lucknow, Lucknow, India.
Periodicity:October - December'2023
DOI : https://doi.org/10.26634/jms.11.3.20523


In this present work, a Cr-Doped Polyaniline [Cr-PANI-CNT] nanocomposite using the chemical polymerization method is synthesized, where ammonium persulphate was used as an oxidant in an acidic (HCl) medium. The optical properties of both CNTs and PANI with Cr were investigated using Fourier Transform Infrared Spectroscopy (FTIR), and the morphological study of the nanocomposite was performed with the help of FESEM and TEM analysis. Expanding on this, our investigation into the Cr-Doped Polyaniline [Cr-PANI-CNT] nanocomposite's optical properties via FTIR included a detailed examination of the interaction between Carbon Nanotubes (CNTs) and PANI doped with Cr. This analysis not only provided insights into the chemical bonding and structural changes but also shed light on the nanocomposite's potential applications in optoelectronic devices. Furthermore, our comprehensive morphological study using FESEM and TEM analysis allowed us to delve into the nanocomposite's structural characteristics and surface morphology at the nanoscale level. These insights are crucial for understanding the nanocomposite's physical properties and its suitability for various technological applications, such as sensors, energy storage devices, and catalysis. This study explored the electrical conductivity of Cr-Doped Polyaniline [Cr-PANI-CNT] nanocomposite through techniques like electrical conductivity measurements and cyclic voltammetry. These analyses revealed insights into its charge transport mechanisms and potential applications in electronics like field-effect transistors and conductive coatings. Additionally, Thermogravimetric Analysis (TGA) showcased the nanocomposite's thermal stability, making it suitable for hightemperature uses. These findings enhance our understanding and open avenues for its optimized utilization in various advanced technological domains.


Dopant, FESEM, TEM, Synthesis, PANI, Doping, Chromium (Cr), Spectroscopy.

How to Cite this Article?

Gupta, A. (2023). Exploring the Optical and Structural Properties of Chromium (Cr)-Doped Polyaniline. i-manager’s Journal on Material Science, 11(3), 1-7. https://doi.org/10.26634/jms.11.3.20523


[2]. Baker, C. O., Shedd, B., Innis, P. C., Whitten, P. G., Spinks, G. Maxwell., Wallace, G. G. & Kaner, R. (2008). Monolithic actuators from flash-welded polyaniline nanofibers. Advanced Materials, 20 155-158.
[3]. Dhawan, S. K., & Trivedi, D. C. (1989). Preparation of conductive polyaniline solutions for electronic applications. Bulletin of Materials Science, 12, 153-157.
[4]. Gupta, A., & Kumar, M. (2019). Optical & Structural Properties of Chromium (Cr) doped Polyaniline. International Journal of Research in Advent Technology, 7(3), 1232-1234.
[9]. Ratheesh, R., & Viswanathan, K. (2014). Chemical polymerization of aniline using para-toluene sulphonic acid. IOSR Journal of Applied Physics, 6(1), 1-9.
[11]. Vogel, A. I. (1954). A Text-Book of Macro and Semimicro Qualitative Inorganic Analysis. London Longmans.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.