This paper presents an analysis of Reinforced Cement Concrete (RCC) cellular beams, focusing on both static and dynamic aspects. The study investigates the behavior of RCC cellular beams under varying loads, including dead weight, superimposed loads, and environmental factors like wind. It addresses the essential characteristics of dynamic problems compared to static loading scenarios, emphasizing the influence of time-varying loads on structural response. The research methodology involves the design and analysis of a simply supported RCC beam with circular openings, utilizing advanced computational tools such as RISA 3D®. The study outlines the process of modeling, including the design of circular openings and reinforcement details. It also discusses the theoretical background, including the strut and tie model of concrete, which is essential for understanding the structural behavior. The paper presents the results of static and vibrational analysis, including stress distribution, mode shapes, and fundamental frequencies of vibration. The analysis evaluates the performance of RCC cellular beams, considering factors such as stress concentrations, principal stresses, shear stresses, and Von Mises stresses.