References
[1]. Almasoud, M., & Ward, T. E. (2019). Detection of chronic kidney disease using machine learning algorithms with least number of predictors. International Journal of Soft Computing and its Applications, 10(8).
[3]. Arora, M., & Sharma, E. A. (2016). Chronic kidney disease detection by analyzing medical datasets in weka. International Journal of Computer Application, 6(4), 20-26.
[4]. Baby, P. S., & Vital, T. P. (2015). Statistical analysis and predicting kidney diseases using machine learning algorithms. International Journal of Engineering Research and Technology, 4(7), 206-210.
[6]. Charleonnan, A., Fufaung, T., Niyomwong, T., Chokchueypattanakit, W., Suwannawach, S., & Ninchawee, N. (2016, October). Predictive analytics for chronic kidney disease using machine learning techniques. In 2016 Management and Innovation Technology International Conference (MITicon) (pp. MIT- 80). IEEE.
[7]. Eroğlu, K., & Palabaş, T. (2016, December). The impact on the classification performance of the combined use of different classification methods and different ensemble algorithms in chronic kidney disease detection. In 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO) (pp. 512-516). IEEE.
[8].
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8-17.
[9]. Krishna, K., Rayavarapu, A., & Vadlapudi, V. (2012). Statistical and data mining aspects on kidney stones: A systematic review and meta-analysis. Open Access Scientific Reports, 1(12), 1-5.
[11]. Lakshmi, K. R., Nagesh, Y., & Krishna, M. V. (2014). Performance comparison of three data mining techniques for predicting kidney dialysis survivability. International Journal of Advances in Engineering & Technology, 7(1), 242-254.
[12].
Leung, R. K., Wang, Y., Ma, R. C., Luk, A. O., Lam, V., Ng, M., & Chan, J. C. (2013). Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: A prospective case–control cohort analysis. BMC Nephrology, 14, 1-9.
[13]. Mustafa, M., Taib, M. N., Murat, Z., & Sulaiman, N. (2012). Comparison between KNN and ANN classification in brain balancing application via spectrogram image. Journal of Computer Science & Computational Mathematics, 2(4), 17-22.
[15].
Qin, J., Chen, L., Liu, Y., Liu, C., Feng, C., & Chen, B. (2019). A machine learning methodology for diagnosing chronic kidney disease. IEEE Access, 8, 20991-21002.
[16]. Ramana, B. V., Babu, M. S. P., & Venkateswarlu, N. B. (2011). A critical study of selected classification algorithms for liver disease diagnosis. International Journal of Database Management Systems, 3(2), 101- 114.
[17]. Vijayarani, S., & Dhayanand, S. (2015). Kidney disease prediction using SVM and ANN algorithms. International Journal of Computing and Business Research (IJCBR), 6(2), 1-12.