Position Vector of Null General Helices in the Lorentzian Heisenberg Group Heis3

Talat Körpinar*, Essin TURHAN**
*-** Firat University, Department of Mathematics 23119, Elazig, Turkey.
Periodicity:October - December'2012
DOI : https://doi.org/10.26634/jmat.1.4.2046

Abstract

In this paper, the authors study characterizes null general helices in terms of their curvature and torsion in the Lorentzian Heisenberg group Heis3. They also gave their explicit parametrizations.

Keywords

Heisenberg Group, Biharmonic Curve, Null Curve, Helices.

How to Cite this Article?

Körpinar, T., and Turhan, E. (2012). Position Vector Of Null General Helices In The Lorentzian Heisenberg Group Heis3. i-manager’s Journal on Mathematics, 1(4), 18-21. https://doi.org/10.26634/jmat.1.4.2046

References

[1]. L.R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[2]. B. Bukcu, & M.K. Karacan: Bishop Frame of The Spacelike curve with a Spacelike Binormal in Minkowski 3 Space, Selçuk Journal of Applied Mathematics, Vol.11 (1) (2010), 15-25.
[3]. M.do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, New Jersey 1976.
[4]. R.T. Farouki,& C.A. Neff: Algebraic properties of plane o¤set curves, Comput. Aided Geom. Design 7 (1990), 101.127.
[5]. A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[6]. K. Ilarslan, & Ö. Boyac¬o¼glu, Position vectors of a time-like and a null helix in Minkowski 3-space, Chaos Solitons Fractals 38 (2008) 1383.1389.
[7]. G. Y. Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130.144.
[8]. W. Lü: Rationality of the offsets to algebraic curves and surfaces. Appl. Math. (A Journal of Chinese Universities) 9 (Ser.B) (1994), 265 278.
[9]. B. O.Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).
[10]. M. Peternell, & H. Pottmann: Computing rational parametrizations of canal surfaces, J. Symb. Comput. 23 (1997) 255.266.
[11]. S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[12]. U. Shani, & D.H. Ballard: Splines as embeddings for generalized cylinders, Comput. Vision Graphics Image Process. 27 (1984) 129.156.
[13]. E. Turhan, & T. Körp¬nar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis3; Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[14]. E. Turhan and T. Körp¬nar: On Characterization Canal Surfaces around Time like Horizontal Biharmonic Curves in Lorentzian Heisenberg Group Heis3: Zeitschrift für Naturforschung A- A Journal of Physical Sciences 66a (2011), 441-449.
[15]. L. Wang, M.C. Leu,& D. Blackmore: Generating sweep solids for NC verification using the SEDE method, in: Proceedings of the Fourth Symposium on Solid Modeling and Applications, Atlanta, Georgia, 14.16 May 1997, pp. 364.375.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.