References
[1]. L.R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[2]. B. Bukcu, & M.K. Karacan: Bishop Frame of The Spacelike curve with a Spacelike Binormal in Minkowski 3 Space, Selçuk
Journal of Applied Mathematics, Vol.11 (1) (2010), 15-25.
[3]. M.do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, New Jersey 1976.
[4]. R.T. Farouki,& C.A. Neff: Algebraic properties of plane o¤set curves, Comput. Aided Geom. Design 7 (1990), 101.127.
[5]. A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[6]. K. Ilarslan, & Ö. Boyac¬o¼glu, Position vectors of a time-like and a null helix in Minkowski 3-space, Chaos Solitons
Fractals 38 (2008) 1383.1389.
[7]. G. Y. Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986),
130.144.
[8]. W. Lü: Rationality of the offsets to algebraic curves and surfaces. Appl. Math. (A Journal of Chinese Universities) 9 (Ser.B)
(1994), 265 278.
[9]. B. O.Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).
[10]. M. Peternell, & H. Pottmann: Computing rational parametrizations of canal surfaces, J. Symb. Comput. 23 (1997)
255.266.
[11]. S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and
Physics 9 (1992), 295-302.
[12]. U. Shani, & D.H. Ballard: Splines as embeddings for generalized cylinders, Comput. Vision Graphics Image Process. 27
(1984) 129.156.
[13]. E. Turhan, & T. Körp¬nar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg
Group Heis3; Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[14]. E. Turhan and T. Körp¬nar: On Characterization Canal Surfaces around Time like Horizontal Biharmonic Curves in
Lorentzian Heisenberg Group Heis3: Zeitschrift für Naturforschung A- A Journal of Physical Sciences 66a (2011), 441-449.
[15]. L. Wang, M.C. Leu,& D. Blackmore: Generating sweep solids for NC verification using the SEDE method, in:
Proceedings of the Fourth Symposium on Solid Modeling and Applications, Atlanta, Georgia, 14.16 May 1997, pp. 364.375.