References
[2]. Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18(153), 1-43.
[5].
Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Di Giovanni, M. (2020). Neurodiffeq: A python package for solving differential equations with neural networks. Journal of Open Source Software, 5(46), 1931.
[6].
Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., & Piccialli, F. (2022). Scientific machine learning through physics–informed neural networks: Where we are and what's next. Journal of Scientific Computing, 92(3), 88.
[16]. Jaun, A., Hedin, J., & Johnson, T. (1999). Numerical Methods for Partial Differential Equations. Swedish Netuniversity.
[22]. Noye, B. J., & Tan, H. H. (1989). Finite difference methods for solving the two dimensional advection–diffusion equation.
International Journal for Numerical Methods in Fluids, 9(1), 75-98.
[23]. Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. Journal of Machine Learning Research, 19(25), 1-24.
[25]. Smith, G. D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford university press.
[26]. Sun, Y., Zhang, L., & Schaeffer, H. (2020, August). NeuPDE: Neural network based ordinary and partial differential equations for modeling time-dependent data. In Mathematical and Scientific Machine Learning (pp. 352-372). PMLR.
[27]. Thomas, J. W. (2013). Numerical Partial Differential Equations: Finite Difference Methods. Springer Science & Business Media.
[28]. Weinan, E., Hutzenthaler, M., Jentzen, A., & Kruse, T. (2017). Linear scaling algorithms for solving high-dimensional nonlinear parabolic differential equations. SAM Research Report, 2017 (43).