References
[1]. AL-Bakhrani, A. A., Hagar, A. A., Hamoud, A. A., &
Kawathekar, S. (2020). Comparative analysis of cpu
scheduling algorithms: Simulation and its applications.
International Journal of Advanced Science and
Technology, 29(3), 483-494.
[2].
Alworafi, M. A., Dhari, A., El-Booz, S. A., Nasr, A. A.,
Arpitha, A., & Mallappa, S. (2019). An enhanced task
scheduling in cloud computing based on hybrid
approach. In Data Analytics and Learning: Proceedings
of DAL 2018 (pp. 11-25). Springer Singapore.
[3].
Alworafi, M. A., Dhari, A., El-Booz, S. A., Nasr, A. A.,
Arpitha, A., & Mallappa, S. (2019). An enhanced task scheduling in cloud computing based on hybrid
approach. In Data Analytics and Learning: Proceedings
of DAL 2018 (pp. 11-25). Springer Singapore.
[4].
Bhuiyan, A., Guo, Z., Saifullah, A., Guan, N., & Xiong,
H. (2018). Energy-efficient real-time scheduling of DAG
tasks. ACM Transactions on Embedded Computing
Systems (TECS), 17(5), 1-25.
[8].
Butangen, A. K. G., Velasco, C. E., Codmos, J. C. B.,
Bayani, E. F., & Baquirin, R. B. (2020, January). Utilizing
dynamic mean quantum time round robin to optimize the
shortest job first scheduling algorithm. In Proceedings of
2020 the 6th International Conference on Computing and
Data Engineering, (pp. 14-18).
[9]. Chandran, J., & Viswanatham, V. M. (2021,
February). Evaluating the effectiveness of community
detection algorithms for influence maximization in social
networks. In 2021 International Conference on Advances in Electrical, Computing, Communication and
Sustainable Technologies (ICAECT) (pp. 1-11). IEEE.
[10].
Chang, S., Bi, R., Sun, J., Liu, W., Yu, Q., Deng, Q., &
Gu, Z. (2022). Toward minimum WCRT bound for DAG
tasks under prioritized list scheduling algorithms. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(11), 3874-3885.
[11].
Chasapis, D., Moretó, M., Schulz, M., Rountree, B.,
Valero, M., & Casas, M. (2019, June). Power efficient job
scheduling by predicting the impact of processor
manufacturing variability. In Proceedings of the ACM
International Conference on Supercomputing, (pp. 296-307).
[13].
Chen, Y., Goebel, R., Lin, G., Liu, L., Su, B., Tong, W., &
Zhang, A. (2022). A local search 4/3-approximation
algorithm for the minimum 3-path partition problem.
Journal of Combinatorial Optimization, 44(5), 3595-3610.
[14].
Deng, Z., Cao, D., Shen, H., Yan, Z., & Huang, H.
(2021). Reliability-aware task scheduling for energy
efficiency on heterogeneous multiprocessor systems. The
Journal of Supercomputing, 77, 11643-11681.
[16]. Duy, T. V. T., Sato, Y., & Inoguchi, Y. (2010, April).
Performance evaluation of a green scheduling algorithm
for energy savings in cloud computing. In 2010 IEEE
International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW) (pp. 1-8).
IEEE.
[17].
Gupta, A. K., Mathur, P., Travieso-Gonzalez, C. M.,
Garg, M., & Goyal, D. (2021, August). ORR: Optimized
Round Robin CPU Scheduling Algorithm. In Proceedings
of the International Conference on Data Science,
Machine Learning and Artificial Intelligence, (pp. 296-304).
[18]. Hamayun, M., & Khurshid, H. (2015). An optimized
shortest job first scheduling algorithm for CPU scheduling.
Journal of Applied Environmental and Biological
Sciences, 5(12), 42-46.
[19]. He, Q., Guan, N., & Guo, Z. (2019). Intra-task priority
assignment in real-time scheduling of DAG tasks on multicores.
IEEE Transactions on Parallel and Distributed
Systems, 30(10), 2283-2295.
[21]. Hu, B., Cao, Z., & Zhou, M. (2021). Energy-minimized
scheduling of real-time parallel workflows on
heterogeneous distributed computing systems. IEEE
Transactions on Services Computing, 15(5), 2766-2779.
[22].
Ji, M., Zhang, W., Liao, L., Cheng, T. C. E., & Tan, Y.
(2019). Multitasking parallel-machine scheduling with
machine-dependent slack due-window assignment.
International Journal of Production Research, 57(6), 1667-1684.
[23]. Krishnapura, R., Goddard, S., & Qadi, A. A. (2004). A
dynamic real-time scheduling algorithm for reduced
energy consumption. CSE Technical Reports, 72
[24]. Kumar, M., & Sharma, S. C. (2016, March). Priority
Aware Longest Job First (PA-LJF) algorithm for utilization of
the resource in cloud environment. In 2016 3rd
International Conference on Computing for Sustainable
Global Development (INDIACom) (pp. 415-420). IEEE.
[25]. Kumar, M., & Sharma, S. C. (2016, March). Priority
aware longest job first (PA-LJF) algorithm for utilization of
the resource in cloud environment. In 2016 3rd
International Conference on Computing for Sustainable
Global Development (INDIACom) (pp. 415-420). IEEE.
[26]. Lee, Z., Wang, Y., & Zhou, W. (2011, August). A
dynamic priority scheduling algorithm on service request
scheduling in cloud computing. In Proceedings of 2011
International Conference on Electronic & Mechanical
Engineering and Information Technology, 9, 4665-4669.
IEEE.
[27]. Lee, Z., Wang, Y., & Zhou, W. (2011, August). A
dynamic priority scheduling algorithm on service request
scheduling in cloud computing. In Proceedings of 2011
International Conference on Electronic & Mechanical
Engineering and Information Technology, 9, 4665-4669.
IEEE.
[30]. Lin, C. C., Shi, J., Ueter, N., Günzel, M., Reineke, J., &
Chen, J. J. (2022). Type-aware federated scheduling for
typed dag tasks on heterogeneous multicore platforms.
IEEE Transactions on Computers, 72(5), 1286-1300.
[31]. Maia, C., Nogueira, L., & Pinho, L. M. (2013, June).
Scheduling parallel real-time tasks using a fixed-priority
work-stealing algorithm on multiprocessors. In 2013 8th
IEEE International Symposium on Industrial Embedded
Systems (SIES) (pp. 89-92). IEEE.
[33]. Nayak, D., Malla, S. K., & Debadarshini, D. (2012). Improved round robin scheduling using dynamic time
quantum. International Journal of Computer
Applications, 38(5), 34-38.
[34]. Nayak, D., Malla, S. K., & Debadarshini, D. (2012).
Improved round robin scheduling using dynamic time
quantum. International Journal of Computer
Applications, 38(5), 34-38.
[35].
Öztop, H., Fatih Tasgetiren, M., Türsel Eliiyi, D., & Pan,
Q. K. (2018). Green permutation flowshop scheduling: A
trade-off-between energy consumption and total flow
time. In Intelligent Computing Methodologies: 14th
International Conference, ICIC 2018, Wuhan, China,
Procedings, Part III 14 (pp. 753-759). Springer International
Publishing.
[36]. Paul, T., Hossain, R., & Samsuddoha, M. (2019).
Improved round robin scheduling algorithm with
progressive time quantum. International Journal of
Computer Applications, 178(49), 30-36.
[38].
Qin, Y., Zeng, G., Kurachi, R., Li, Y., Matsubara, Y., &
Takada, H. (2019). Energy-efficient intra-task DVFS
scheduling using linear programming formulation. IEEE
Access, 7, 30536-30547.
[41].
Santra, S., Dey, H., Majumdar, S., & Jha, G. S. (2014,
July). New simulation toolkit for comparison of scheduling
algorithm on cloud computing. In 2014 International
Conference on Control, Instrumentation,
Communication and Computational Technologies
(ICCICCT) (pp. 466-469). IEEE.
[42].
Santra, S., Dey, H., Majumdar, S., & Jha, G. S. (2014,
July). New simulation toolkit for comparison of scheduling
algorithm on cloud computing. In 2014 International
Conference on Control, Instrumentation, Communication
and Computational Technologies (ICCICCT) (pp. 466-469). IEEE.
[43]. Singh, A., Goyal, P., & Batra, S. (2010). An optimized
round robin scheduling algorithm for CPU scheduling.
International Journal on Computer Science and
Engineering, 2(07), 2383-2385.
[44]. Song, J., Xie, G., Li, R., & Chen, X. (2017,
December). An efficient scheduling algorithm for energy
consumption constrained parallel applications on
heterogeneous distributed systems. In 2017 IEEE
International Symposium on Parallel and Distributed
Processing with Applications and 2017 IEEE International
Conference on Ubiquito us Computing and
Communications (ISPA/IUCC) (pp. 32-39). IEEE.
[45]. Song, J., Xie, G., Li, R., & Chen, X. (2017,
December). An efficient scheduling algorithm for energy
consumption constrained parallel applications on
heterogeneous distributed systems. In 2017 IEEE
International Symposium on Parallel and Distributed
Processing with Applications and 2017 IEEE International
Conference on Ubiquito us Computing and
Communications (ISPA/IUCC) (pp. 32-39). IEEE.
[47].
Tang, Q., Zhu, L. H., Lian, J., Zhou, L., & Wei, J. B. (2020). An efficient multi-functional duplication-based
scheduling framework for multiprocessor systems. The
Journal of Supercomputing, 76, 9142-9167.
[49]. Xie, G., Zeng, G., Xiao, X., Li, R., & Li, K. (2017).
Energy-efficient scheduling algorithms for real-time
parallel applications on heterogeneous distributed
embedded systems. IEEE Transactions on Parallel and
Distributed Systems, 28(12), 3426-3442.