References
[2]. Alpaydin, E. (2020). Introduction to Machine Learning. MIT press.
[3]. Bonnell, J. A. (2011). Implementation of a New Sigmoid Function in Back propagation Neural Networks (Master thesis, East Tennessee State University).
[4]. Chaithanya, B. N., Swasthika Jain, T. J., Usha Ruby, A., & Parveen, A. (2021). An approach to categorize chest X- ray images using sparse categorical cross entropy. Indonesian Journal of Electrical Engineering and Computer Science, 24(3), 1700-1710.
[5]. Covington, P., Adams, J., & Sargin, E. (2016, September). Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, (pp. 191-198).
[6]. da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F., da Silva, I. N., & dos Reis Alves, S. F. (2017). Multilayer perceptron networks. Artificial Neural Networks: A Practical Course, (pp. 55-115).
[10]. Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (pp. 4690- 4699).
[13].
Feng, X., Jiang, Y., Yang, X., Du, M., & Li, X. (2019). Computer vision algorithms and hardware implementations: A survey. Integration, 69, 309-320.
[14]. Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.
[15].
He, C., Shah, A. D., Tang, Z., Sivashunmugam, D. F. N., Bhogaraju, K., Shimpi, M., & Avestimehr, S. (2021). FedCV: A federated learning framework for diverse computer vision tasks. arXiv.
[23].
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999-7019.
[24]. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 212-220).
[26]. Liu, Y., Gao, Y., & Yin, W. (2020). An improved analysis of stochastic gradient descent with momentum. Advances in Neural Information Processing Systems, 33, 18261-18271.
[29].
Pratiwi, H., Windarto, A. P., Susliansyah, S., Aria, R. R., Susilowati, S., Rahayu, L. K., & Rahadjeng, I. R. (2020, February). Sigmoid activation function in selecting the best model of artificial neural networks. In Journal of Physics: Conference Series, 1471(1), 012010. IOP Publishing.
[36].
Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K. R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247-278.
[37]. Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 310-316.
[38]. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning, (pp. 6105-6114). PMLR.
[40]. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., & Liu, W. (2018). Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 5265-5274).
[44]. Zhang, C., Benz, P., Argaw, D. M., Lee, S., Kim, J., Rameau, F., & Kweon, I. S. (2021). Resnet or densenet? Introducing dense shortcuts to resnet. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, (pp. 3550-3559).