It is essential to inspect and assess any fatigue damage to the components of a structure in order to determine how long it will last. This is necessary for constructions such as concrete bridges, which are subjected to fluctuating loads with high intensity and frequency. This study presents a computer application method for calculating the fatigue life of the Durga flyover (reinforced concrete) bridge. The damage to bridge components can be evaluated based on the dynamics of the interaction between the bridge and vehicles caused by actual traffic. The computer code initially calculates the fluctuation of stresses caused by the passage of various types of vehicles in a given segment of a bridge. The other module has a continuous set of loads to measure the strains and calculate the stress variations across the section components. The rainflow method is used to count stress cycles owing to the fact that the peak intensities of the stress cycles are not steady, and the appropriate S-N curves are utilized to determine the damage caused by each cycle. In this analysis, the stress range amplitude waveform and fatigue toughness characteristics of bridge elements were employed to systematically detect continuous bridge girder fatigue damage. The most severe flexural stresses induced by vehicles were detected, and a stress-range frequency waveform was created while accounting for the total traffic volume. Linear damage accumulation theory was used to calculate the cumulative damage index and bridge fatigue life. The Miner's rule was used to calculate the overall damage caused by the passage of the vehicles. The major factors affecting the fatigue life are the effects of the span, pavement quality, increase in the speed of operation, weight, and suspension characteristics of the bridge.