References
[1]. Ferrero, R.W., Rivera, J.F., & Shahidehpour, S.M. (1998).
A Dynamic Programming Two-Stage Algorithm For Long-
Term Hydrothermal Scheduling Of Multi reservoir Systems,
IEEE Transactions on Power System, vol. 13, n.4, pp.1534-
1540.
[2]. Martinez, L., and Soares, S. (2002). Comparison
between Closed-Loop and Partial Open-Loop Feedback
Control Policies in Long Term Hydrothermal Scheduling, IEEE
Transactions on Power Systems, Vol. 17, No. 2, pp. 330-336.
[3]. Benhamida, F. (2009). A Hybrid Lagrangian Relaxation –
Dynamic Programming Solution to the Unit Commitment
Problem, Journal of Electrical Engineering, Vol. 9, No. 4,
2009, pp. 31-40.
[4]. Salem Al-Agtash (2001). Hydrothermal Scheduling by
Augmented Lagrangian: Consideration of Transmission
Constraints and Pumped-Storage Units, IEEE Transactions
on Power Systems, Vol. 16, No. 4, 2001, pp. 750-756
[5]. Ngundam, J.M., Kenfack, F., & Tatietse, T.T. (2002).
Optimal Scheduling of Large – Scale Hydrothermal Power
Systems Using the Lagrangian Relaxation Technique,
International Journal of Electrical Power & Energy Systems,
Vol. 22, No. 1, 2002, pp.237-245.
[6]. Alberto Borghetti, Antonio Frangioni, Fabrizio
Lacalandra, and Carlo Alberto Nucci, (2003). Lagrangian
Heuristics Based on Disaggregated Bundle Methods for
Hydrothermal Unit Commitment, IEEE Transactions on
Power Systems, Vol. 18, No. 1,2003, pp.313-323.
[7]. Ruey-Hsun Liang, Ming-Huei Ke, and Yie-Tone Chen,
(2009). Co evolutionary Algorithm Based on Lagrangian
Method for Hydrothermal Generation Scheduling, IEEE
Transactions on Power Systems, Vol. 24, No. 2, 2009, pp.
499-507.
[8]. Gary, W. Chang, Mohamed Aganagic, James G.
Waight, José Medina, Tony Burton, Steve Reeves, and
Christoforidis, M. (2001). Experiences With Mixed Integer
Linear Programming Based Approaches on Short-Term
Hydro Scheduling, IEEE Transactions on Power Systems, Vol.
16, No. 4, 2001, pp.743-749.
[9]. Alberto Borghetti, Claudia D'Ambrosio, Andrea Lodi,
and Silvano Martello, (2008). An MILP Approach for Short-
Term Hydro Scheduling and Unit Commitment with Head-
Dependent Reservoir, IEEE Transactions on Power Systems,
Vol. 23. No. 3, pp. 1115-1124.
[10]. Costas G. Baslis, Stylianos E. Papadakis, and
Anastasios G. Bakirtzis, (2009). Simulation of Optimal
Medium-Term Hydro-Thermal System Operation by Grid
Computing, IEEE Transactions on Power Systems, Vol. 24,
No. 3, pp. 1208-1217.
[11]. Baptistella, L.F.B., and Gerome, J.C. (1980).
Decomposition approach to problem of unit commitment
schedule for hydrothermal systems, IEE Proc. Generation,
Transmission and Distribution, Vol. 127, No. 6, pp. 250-258.
[12]. Mohan, M.R., Kuppusamy, K., Abdullah Khan, M.
(1992). Optimal Short-term Hydro-Thermal Scheduling using
Decomposition Approach and Linear Programming
Method, International Journal of Electrical Power and
Energy Systems, Vol. 14, No. 1, 1992, pp.39-44.
[13]. Wilfredo S. Sifuentes, Alberto Vargas, (2007).
Hydrothermal Scheduling Using Benders Decomposition:
Accelerating Techniques, IEEE Transactions on Power
Systems, Vol. 22, No. 3, pp. 1351-1359.
[14]. Tiago Norbiato dos Santos and Andre Luiz Diniz,
(2009). A New Multi period Stage Definition for the
Multistage Benders Decomposition Approach Applied to
Hydrothermal Scheduling, IEEE Transactions on Power
Systems, Vol. 24, No. 3, pp.1383-1392.
[15]. Srinivasa Rao, C., Siva Nagaraju, S., Sangameswara
Raju, P. (2009). Automatic generation control of TCPS based hydrothermal system under open market scenario:
A fuzzy logic approach, International Journal of Electrical
Power and Energy Systems, Vol. 31, No. 1, pp. 315–322.
[16]. Vo Ngoc Dieu, Weerakorn Ongsakul, (2008).
Enhanced merit order and augmented Lagrange Hopfield
network for hydrothermal scheduling, International Journal
of Electrical Power and Energy Systems, vol. 30, n. 1, pp.
93–101.
[17]. Kirkpatrick S, Gelatt CD, Jr., Vecehi MP, (1983).
Optimisation by Simulated Annealing, Science, Vol. 220,
No. 1, 1983, pp. 4598.
[18]. Shokri Z. Selim and Alsultan, K. (1991). A Simulated
Annealing Algorithm for the Clustering Problem, Pattern
Recognition, Vol. 24, No. 10, 1991, pp 1003-1008.
[19]. Zhuang, F., and Galiana, F.D. (1990) Unit
Commitment by Simulated Annealing, IEEE Trans. on Power
Systems, Vol. 5, No. 1, 1990, pp.311-318.
[20]. Mantawy, A.H., Youssef, L. Abdel-Magid, Shokri Z.
Selim, (1998). A Simulated Annealing Algorithm for Unit
Commitment, IEEE Trans. on Power Systems, Vol. 13, No. 1,
1998, pp. 197-204.
[21]. Mantawy, A.H., Youssef L. Abdel-Magid, Shokri Z.
Selim, (1998). A Unit Commitment By Tabu Search, IEE Proc.
Generation, Transmission and Distribution, Vol. 145, No. 1,
1998, pp.56-64.
[22]. Whei-Min Lin, Fu-Sheng Cheng, Ming-Tong Tsay,
(2002). An Improved Tabu Search for Economic Dispatch
With Multiple Minima, IEEE Transactions on Power Systems,
Vol. 17, No. 1, 2002, pp.108-112.
[23]. Xaiomin Bai and Shahidehpur, S.M. (1996). Hydro-
Thermal Scheduling by Tabu Search and Decomposition,
IEEE Transactions on Power Systems, Vol. 11, No. 2, 1996,
pp.968-974.
[24]. Rudolf, A., and Bayrleithner, R. (1999). A Genetic
Algorithm for Solving the Unit Commitment Problem of a
Hydro Thermal Power System, IEEE Transactions on Power
Systems, Vol. 14, No. 4, pp. 1460-1468.
[25]. Yong-Gang Wu, Chun-Ying Ho, (2000). A Diploid
Genetic Approach to Short-Term Scheduling of Hydro-
Thermal System, IEEE Transactions on Power Systems, Vol.
15, No. 4, 2000, pp. 1268-1274.
[26]. Esteban Gil, Julian Bustos, and Hugh Rudnick, Short-
Term Hydrothermal Generation Scheduling Model Using a
Genetic Algorithm, IEEE Transactions on Power Systems, vol.
18, n. 4, 2003, pp.1256-1264.
[27]. Mariappane, E., & Thyagarajah, K. (2009). A Genetic
Algorithm Approach to Price-Based Unit Commitment,
Journal of Electrical Engineering, Vol. 9, No. 4, 2009, pp.
41-46.
[28]. R. Lal Raja Singh, & C. Christober Asir Rajan, (2011). A
Hybrid Particle Swarm Optimization Employing Genetic
Algorithm for Unit Commitment Problem, International
Review of Electrical Engineering, Vol. 6. No. 7, pp. 3211-
3217.
[29]. Werner, T.G., & Verstege, F. (1999). An Evolution
Strategy for Short-Term Operation Planning of Hydrothermal
Power Systems, IEEE Transactions on Power Systems, Vol. 14,
No. 4, pp. 1362-1368.
[30]. Cau TDH and Kaye, R.J. (2002). Evolutionary
Optimization Method for multi storage hydrothermal
scheduling, IEE Proc. – Gener. Transm. Distrib., Vol. 149, No.
2, pp. 152-156.
[31]. Nidul Sinha, Chakrabarti, R., and Chattopadhyay,
P.K. (2003). Fast Evolutionary Programming Techniques for
Short-Term Hydrothermal Scheduling, IEEE Transactions on
Power Systems, Vol. 18, No. 1, 2003, pp. 214-220.
[32]. Shyh-Jier Huang, (2002). Enhancement of
Hydroelectric Generation Scheduling Using Ant Colony
System Based Optimization Approaches, IEEE Transactions
on Energy Conversion, Vol. 16, No. 3, pp. 296-301.
[33]. T. Venkatesan, & M.Y. Sanavullah, Implementation of
Modified SFLA for the Thermal Unit Commitment Problem,
International Review on Modelling and Simulations, Vol. 5.
No. 1, 2012, pp. 450-457.
[34]. Christober Asir Rajan, C. (2010). HybridizingEvolutionary Programming, Simulated Annealing, Tabu
Search Method to Solve the Unit Commitment Problem,
Journal of Electrical Engineering, Vol. 10, No. 1, 2010, pp.
34-41.
[35]. Nimain Charan Nayak, C. Christober Asir Rajan,
(2011). Thermal Unit Commitment Scheduling Problem in
Utility System by Simulated Annealing Embedded
Evolutionary Programming Method, International Review
on Modelling and Simulations, Vol. 4. No. 6, pp. 3188-3194.
[36]. M.S. Javadi, A. Meskarbashi, R. Azami, Gh.
Hematipour, A. Javadinasab, (2011). Security Constrained
Unit Commitment in Iran's Electricity Market, International
Review on Modelling and Simulations, Vol. 4. No. 6, 2011,
pp. 3104-3112.
[37]. M.S. Javadi, A. Meskarbashi, R. Azami, Gh.
Hematipour, A. Javadinasab, (2011). Emission Controlled
Security Constrained Unit Commitment Considering Hydro-
Thermal Generation Units, International Review on
Modelling and Simulations, Vol. 4. No. 6, 2011, pp. 3243-
3250.
[38]. Chitra Selvi, S., Kumudini Devi, R.P., Christober Asir
Rajan, C. (2009). A Hybrid Approaches for the Profit Based
Unit Commitment Problem in the Deregulated Markets,
Journal of Electrical Engineering, Vol. 9, No. 3, pp. 35-41.
[39]. S. Ganesan, & S. Subramanian, (2012). Reliability
Constrained Thermal Unit Commitment Solution Using a
Hybrid Approach, International Review on Modelling and
Simulations, Vol. 5. No. 1, 2012, pp. 434-441.
[40]. Ahmed Bensalem, Abdelmalik Bouhentala, & Salah
Eddine Zouzou, (2006). Optimal Hydropower Generation
Management, Journal of Electrical Engineering, Vol. 6, No.
2, 2006, pp. 21-26.
[41]. Allen J. Wood and Wollenberg BF, Power Generation,
Operation and Control, John Wiley & Sons, 1984.