This study presents a comparative analysis of fault detection and categorization methods in TCSC (Thyristor Controlled Series Capacitor)-compensated power systems. The analysis explores different techniques for extracting fault features from current data obtained from TCSC-compensated transmission lines. Machine learning algorithms, namely kNearest Neighbor (k-NN) and Support Vector Machine (SVM) are employed to categorize the extracted features, enabling fault detection and identification. To evaluate the efficacy of the proposed method, simulation tests were conducted on a test system, considering various fault scenarios. The simulations accounted for the presence of noise and TCSC correction, reflecting real-world operating conditions. The results demonstrate the efficiency of multiple approaches in accurately and swiftly detecting and classifying faults. By leveraging the capabilities of machine learning algorithms and extracting relevant features from current data, the proposed method offers a promising solution for fault detection and categorization in TCSC-compensated power systems. The ability to operate effectively even in the presence of noise and TCSC correction highlights the robustness and reliability of the proposed approach.