Analysis on fuzzy membership functions for image segmentation using ultrafuzziness

M. Seetharama Prasad*, Kolluri Raju**, C.H. Venkata Narayana***
* KL University, Vijayawada, India.
** GVR & S col. of E&T, Guntur, India.
*** LBR College of Engineering, Mylavaram, India.
Periodicity:July - September'2012
DOI : https://doi.org/10.26634/jse.7.1.1965

Abstract

In this paper, a study on  fuzzy membership functions   for image segmentation using ultrafuzziness is conducted. In this work, Tizhoosh membership function which is totally supervised, Huang & Wang membership function and S-function are   considered. This work is an improvement of an existing work of Tizhoosh. Each membership function has its own merits and demerits in the computation process.  Using fuzzy logic concepts, the problems involved in finding the minimum/maximum of a entropy criterion function are avoided. We attempt to make it clear that identifying the better membership function to assign the fuzzy membership grade to every pixel in the image, for optimum image segmentation using ultrafuzziness. For low contrast images contrast enhancement is assumed. Experimental results demonstrate a quantitative improvement with S-function over other two other functions.

Keywords

Ultrafuzziness, Image Segmentation, Threshold, Fuzzy Measure.

How to Cite this Article?

M. Seetharama Prasad, Kolluri Raju, and C.H. Venkata Narayana (2012). Analysis on Fuzzy membership functions for Image Segmentation using Ultrafuzziness. i-manager’s Journal on Software Engineering, 7(1), 25-34. https://doi.org/10.26634/jse.7.1.1965

References

[1]. W.K. Pratt (2001). Digital Image Processing, third Ed. New York: Wiley.
[2]. R.C. Gonzalez & R.E. Woods (1993). Digital Image Processing. Reading, MA: Addison-Wesley.
[3]. N.R. Pal and S.K. Pal (1993). “A review on image segmentation techniques”, Pattern recog., 26(9), 1277- 1294.
[4]. Y.J. Zhang (1996). “A survey on evaluation methods for image segmentation,” Computer Vision and Pattern Recognition, vol. 29, 1335–1346.
[5]. M. Sezgin and B. Sankur (2004). “Survey over image thresholding techniques and quantitative performance evaluation,” J. Electron. Imag., 13(1), 146–165.
[6]. N. Otsu (1979). “A threshold selection method from gray level histograms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-9, 62–66.
[7]. T. Ridler and S. Calvard (1978). “Picture thresholding using an iterative selection method,” IEEE Trans. Syst., Man, Cybern., vol. SMC-8, 630–632.
[8]. J. Kittler and J. Illingworth (1986). “Minimum error thresholding,” Pattern Recognit, 19(1).
[9]. J.N. Kapur, P. K. Sahoo & A. K. C. Wong (1985). A new method for graylevel picture thresholding using the entropy of the histogram, Graph. Models Image Process., 29, 273–285.
[10]. T. Pun (1985). A new method for gray-level picture thresholding using the entropy of the histogram, Signal Process., 2( 3), 223–237.
[11]. Yang Xiao, Zhiguo Cao, Tianxu Zhang (2008). “Entropic thresholding based on gray level spatial correlation histogram”, IEEE trans. 19th international conf., 1-4.
[12]. Y. Xiao, Z.G. Cao & S. Zhong (2010). New entropic thresholding approach using gray-level spatial correlation histogram, Optics Engineering, 49, 127007.
[13]. M. Seetharama Prasad, T. Divakar & L.S.S. Reddy (2011). Improved Entropic Thresholding based on GLSC histogram with varying similarity measure, International Journal of Computer Applications, 23(1), 25-32.
[14]. Yang Xiao, Zhiguo Cao & Wen zhuo (2011). Type-2 fuzzy thresholding using GLSC histogram of human visual nonlinearity characteristics, Optics Express, 19(11).
[15]. L.A. Zadeh (1965). Fuzzy sets, Inf. Control 8, 338-353.
[16]. C. Murthy & S. Pal (1990). “Fuzzy thresholding: Mathematical framework, bound functions and weighted moving average technique,” Pattern Recognit. Lett., 11, 197–206.
[17]. O.J. Tobias, R. Seara, & F.A.P. Soares (1996). “Automatic image segmentation using fuzzy sets,” in Proc. 38th Midwest Symp. Circuits and Systems, 2, 921–924.
[18]. O.J. Tobias & R. Seara (2002). Image segmentation by histogram thresholding using fuzzy sets, IEEE Trans. Image Process.,11.
[19]. A.S. Pednekar & I.A. Kakadiaris (2006). Image segmentation based on fuzzy connectedness using dynamic weights, IEEE Trans. Image Process., 15(6), 1555–1562.
[20]. F. Sahba & H.R. Tizhoosh (2009). Quasi-Global Oppositional Fuzzy Thresholding, in Proc. IEEE International Conference on Fuzzy Systems (FUZZ–IEEE), Korea, 1346-1351.
[21]. C.V. Jawahar, P.K. Biswas, & A.K. Ray (1997). “Investigations on fuzzy thresholding based on fuzzy clustering”, Pattern Recogn. 30(10) 1605–1613.
[22]. K.S. Chuang, H.L. Tzeng, S. Chen, J. Wu & T.J. Chen (2006). Fuzzy c-means clustering with spatial information for image segmentation, Comput. Med. Imag. Graph., 30(1), 9–15.
[23]. S. Sahaphong and N. Hiransakolwong, “Unsupervised image segmentation using automated fuzzy c-means,” in Proc. IEEE Int. Conf. Computer and Information Technology, pp. 690–694, Oct. 2007.
[24]. A. Kaufmann (1975). Introduction to the Theory of Fuzzy Subsets. New York: Academic, vol. I.
[25]. N.R. Pal & J.C. Bezdek (1994). Measuring fuzzy uncertainty, IEEE Trans. Fuzzy Syst. 2.
[26]. H.R. Tizhoosh (2005). “Image thresholding using type II fuzzy sets,” Pattern Recognit., 38, 2363–2372.
[27]. Lopes, Couto, Bustince & Pinto (2010). “Automatic HistogramThreshold using Fuzzy Measures” IEEE Trans. Image Process.,19(1).
[28]. L.K. Huang & M.J.J. Wang (1995). “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognit., 28(1), 41–51.
[29]. F. Sahba & H.R. Tizhoosh (2009). “Quasi-Global Oppositional Fuzzy Thresholding” in Proc. IEEE International Conference on Fuzzy Systems (FUZZ – IEEE), Korea, 1346-1351.
[30]. M Seetharama Prasad, T Divakar, B. Srinivasa Rao, Dr. C. Naga Raju (2011). Unsupervised Image tresholding using Fuzzy Measures”, International Journal of Computer Applications, 27 (2), 32-41.
[31]. Paul Jaccard (1901). "Etude comparative de la distribution orale dansune portion des Alpes et des Jura". In Bulletin del la Socit Vaudoise des Sciences Naturelles, Vol. 37, pp. 547-579. 1901.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.