Integration of Color and Texture features for Content Based Image Retrieval

kandala lakshmi aparna*, M Venu Gopala Rao**
*Assistant Professor, Department of EEE, KL University
** Professor & Head, Department of EEE, KL University.
Periodicity:July - September'2012
DOI : https://doi.org/10.26634/jse.7.1.1957

Abstract

This paper presents a new image indexing and retrieval algorithm by combining the color (RGB histogram) and texture feature (local derivative patterns (LDPs). Texture feature, LDP extracts the high-order local information by encoding various distinctive spatial relationships contained in a given local region. Color features, histogram extracts the distribution of various colors in an image. The experimentation has been carried out for proving the worth of our algorithm. It is further mentioned that the database considered for experiment is Corel 1000 databased. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LDP, RGB histogram.

Keywords

Local Derivative Patterns; Feature Extraction; Local Binary Patterns; Image Retrieval; Histogram.

How to Cite this Article?

K. Lakshmi Aparna and M. Venu Gopala Rao (2012). Integration of Color and Texture Features for Content Based Image Retrieval. i-manager’s Journal on Software Engineering, 7(1), 12-18. https://doi.org/10.26634/jse.7.1.1957

References

[1]. Y. Rui and T.S. Huang, Image retrieval: Current techniques, promising directions and open issues, J.. Vis. Commun. Image Represent., 10 (1999) 39–62.
[2]. A. W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell., 22 (12) 1349–1380, 2000.
[3]. M. Kokare, B.N. Chatterji, and P.K. Biswas, A survey on current content based image retrieval methods, IETE J. Res., 48 (3&4) 261–271, 2002.
[4]. Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, A survey of content-based image retrieval with high-level semantics, Elsevier J. Pattern Recognition, 40, 262-282, 2007.
[5]. M.J. Swain and D.H. Ballar, Indexing via color histograms, Proc. 3rd Int. Conf. Computer Vision, Rochester Univ., NY, (1991) 11–32.
[6]. M. Stricker and M. Oreng, Similarity of color images, Proc. SPIE, Storage and Retrieval for Image and Video Databases, (1995) 381–392.
[7]. G. Pass, R. Zabih, and J. Miller, Comparing images using color coherence vectors, Proc. 4th ACM Multimedia Conf., Boston, Massachusetts, US, (1997) 65–73.
[8]. J. Huang, S.R. Kumar, and M. Mitra, Combining supervised learning with color correlograms for contentbased image retrieval, Proc. 5th ACM Multimedia Conf., (1997) 325–334.
[9]. Z.M. Lu and H. Burkhardt, Colour image retrieval based on DCT domain vector quantization index histograms, J. Electron. Lett., 41 (17) (2005) 29–30.
[10]. J.R. Smith and S.F. Chang, Automated binary texture feature sets for image retrieval, Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Columbia Univ., New York, (1996) 2239–2242.
[11]. H.A. Moghaddam, T.T. Khajoie, A.H Rouhi and M. Saadatmand T. Wavelet Correlogram: A new approach for image indexing and retrieval, Elsevier J. Pattern Recognition, 38 (2005) 2506-2518.
[12]. H.A. Moghaddam and M. Saadatmand T. Gabor wavelet Correlogram Algorithm for Image Indexing and Retrieval, 18th Int. Conf. Pattern Recognition, K.N. Toosi Univ. of Technol., Tehran, Iran, (2006) 925-928.
[13]. A. Ahmadian, and A. Mostafa, An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, Cancun, Mexico, (2003) 930-933.
[14]. H.A. Moghaddam, T.T. Khajoie and A.H. Rouhi, A New Algorithm for Image Indexing and Retrieval Using Wavelet Correlogram, Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, 2 (2003) 497-500.
[15]. M. Saadatmand T., and H.A. Moghaddam, Enhanced Wavelet Correlogram Methods for Image Indexing and Retrieval, IEEE Int. Conf. Image Processing, K.N. Toosi Univ. of Technol., Tehran, Iran, (2005) 541-544.
[16]. M. Saadatmand T. and H.A. Moghaddam, A Novel Evolutionary Approach for Optimizing Content Based Image Retrieval, IEEE Trans. Systems, Man, and Cybernetics, 37 (1) (2007) 139-153.
[17]. L. Birgale, M. Kokare, and D. Doye, Color and Texture Features for Content Based Image Retrieval, International Conf. Computer Grafics, Image and Visualisation, Washington, DC, USA, (2006) 146 – 149.
[18]. M. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf., Patial, India, (2009) 1411-1416.
[19]. Subrahmanyam Murala, R.P. Maheshwari, and R. Balasubramanian, A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering.
[20]. T. Ojala, M. Pietikainen, and D. Harwood, A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.
[21]. T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, 2002.
[22]. M. Pietikainen, T. Ojala, T. Scruggs, K.W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, and W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000.
[23]. T. Ahonen, A. Hadid, and M. Pietikainen, Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, 2006.
[24]. G. Zhao, and M. Pietikainen, Dynamic texture recognition using local binar y patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, 2007.
[25]. M. Heikkil and M. Pietikainen, A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, 2006.
[26]. X. Huang, S.Z. Li, and Y. Wang, Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, 184- 187, 2004.
[27]. M. Heikkila, M. Pietikainen, and C. Schmid, Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, 2009.
[28]. M. Li, and R.C. Staunton, Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, 2008.
[29]. B. Zhang, Y. Gao, S. Zhao, and J. Liu, Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc., 19 (2): 533-544, 2010.
[30]. Corel 1000 and Corel 10000 image database. [Online]. Available: http://wang.ist.psu.edu/docs/ related.shtml.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.