References
[1].
Alkahtani, A. A., Alfalahi, S. T., Athamneh, A. A., AlShetwi, A. Q., Mansor, M. B., Hannan, M. A., & Agelidis, V.
G. (2020). Power quality in microgrids including
supraharmonics: Issues, standards, and mitigations. IEEE
Access, 8, 127104-127122.
[3]. Azim, M. R., & Hoque, M. A. (2011). A fuzzy logic based
dynamic voltage restorer for voltage sag and swell
mitigation for industrial induction motor loads.
International Journal of Computer Applications, 30(8),
9-18.
[4]. Bangjun, L., Shumin, F., & Junyong, Z. (2013). A novel
improved nonlinear robust adaptive control design
method of SVC. Proceedings of the CSEE, 33(30), 65-70.
[5]. El-Gammal, M. A., Abou-Ghazala, A. Y., & ElShennawy, T. I. (2011). Dynamic voltage restorer (DVR) for
voltage sag mitigation. International Journal on Electrical
Engineering and Informatics, 3(1), 1.
[6]. El-Shennawy, T.I., Moussa, A., Gammal, M.A., &
Ghazala, A.Y. (2010). A Dynamic Voltage Restorer for
Voltage Sag Mitigation in a Refinery with Induction Motors
Loads. American Journal of Engineering and Applied
Sciences, 3(1), 144-151.
[7]. Ganesh, S., Raguraman, L., & Anushya, E. (2014).
Modeling and Simulation of Dynamic Voltage Restorer for
Mitigation of Voltage Sags. International Journal of
Electrical and Computer Engineering, 8(8), 1333-1337.
[8].
Han, Y., Feng, Y., Yang, P., Xu, L., & Zalhaf, A. S. (2022).
An efficient algorithm for atomic decomposition of power
quality disturbance signals using convolutional neural
network. Electric Power Systems Research, 206, 107790.
[9].
Han, Y., Feng, Y., Yang, P., Xu, L., Xu, Y., & Blaabjerg, F.
(2019). Cause, classification of voltage sag, and voltage
sag emulators and applications: A comprehensive
overview. IEEE Access, 8, 1922-1934.
[10].
Hetita, I., Zalhaf, A. S., Mansour, D. E. A., Han, Y.,
Yang, P., & Wang, C. (2022). Modeling and protection of
photovoltaic systems during lightning strikes: A review.
Renewable Energy, 184, 134-148.
[11].
Jinbing, L., Guochao, Y., Zhezheng, S., Siying, D., &
Yudan, W. (2021, August). Overview and analysis of
voltage sag mitigation measures. In 2021 Power System
and Green Energy Conference (PSGEC) (pp. 262-268).
IEEE.
[15]. Kumar, K. A., & Dhanalakshmi, K. V. (2016). Voltage
sag and swell compensation by using dvr with a bess.
International Journal of Electrical and Electronic
Engineering & Telecommunications, 5(4), 6-17.
[16]. Mohammed, S. A., Cerrada, C.A., Rahim, A. M., &
Hasanin, B. (2013). Dynamic voltage restorer (DVR) system
for compensation of voltage sags, state-of-the-art review.
International Journal of Computational Engineering
Research, 3(1).
[17].
Mollik, M. S., Hannan, M. A., Ker, P. J., Faisal, M.,
Rahman, M. S. A., Mansur, M., & Lipu, M. H. (2020). Review
on solid-state transfer switch configurations and control
methods: Applications, operations, issues, and future
directions. IEEE Access, 8, 182490-182505.
[19]. Pakharia, A., & Gupt, M. (2012). Dynamic voltage
restorer for compensation of voltage sag and swell: A
literature review. International Journal of Advances in
Engineering & Technology, 4(1), 347.
[20]. Paliwal, M., Verma, R.C., & Rastogi, S. (2014).
Voltage Sag Compensation using Dynamic Voltage
Restorer. Advance in Electronic and Electric Engineering,
4(6), 645-654.
[23]. Sandhya, C., & Anupama, R. (2015). Modelling and
Simulation For Voltage Sags/Swells Mitigation using
dynamic voltage restorer. International Journal of
Conceptions on Electrical and Electronics Engineering,
3(1).
[28]. Srisailam, C. H., & Sreenivas, A. (2012). Mitigation of
voltage sags/swells by dynamic voltage restorer using PI
and fuzzy logic controller. International Journal of
Engineering Research and Applications, 2(4), 1733-1737.
[30]. Sujatha, K. N., & Vaisakh, K. (2013). An adaptive
differential evolution algorithm based minimization of
power loss and voltage instability. International Journal of
Electrical and Electronic Engineering & Telecommunications,
2(2), 99-110.
[33].
Tu, C., Guo, Q., Jiang, F., Chen, C., Li, X., Xiao, F., &
Gao, J. (2019). Dynamic voltage restorer with an
improved strategy to voltage sag compensation and
energy self-recovery. CPSS Transactions on Power
Electronics and Applications, 4(3), 219-229.
[34]. Wang, J., Zhang, Y., Chen, J., & Wu, M. (2021).
Evaluation of voltage sag in provincial power grid and
optimization of potential power supply points for industrial
users. Electric Power Automation Equipment, 41, 201-207.
[35]. Wu, H. W., Guo, M., Zou, J. M., Li, Q., Chen, Z. G.,
Chen, J., & Zhang, Z. H. (2021). Review on detection
algorithm of voltage sag in time domain and transform
domain. Electrical Measurement & Instrumentation,
58(8), 1-10.
[36].
Zalhaf, A. S., Han, Y., Yang, P., Wang, C., & Khan, M.
A. (2022). Analysis of lightning transient performance of
132 kV transmission line connected to Miramar wind farm:
A case study. Energy Reports, 8, 257-265.
[37].
Zalhaf, A. S., Mansour, D. E. A., Han, Y., Yang, P., &
Darwish, M. M. (2021). Numerical and experimental
analysis of the transient behavior of wind turbines when
two blades are simultaneously struck by lightning. IEEE
Transactions on Instrumentation and Measurement, 71,
1-12.
[38].
Zalhaf, A. S., Zhao, E., Han, Y., Yang, P., Almaliki, A. H.,
& Aly, R. M. (2022). Evaluation of the transient
overvoltages of HVDC transmission lines caused by
lightning strikes. Energies, 15(4), 1452.