One of the most significant classes of engineering materials in the modern period is Metal Matrix Composites(MMCs). In recent years, MMCs have attracted a lot of attention. MMCs are displacing traditional metallic materials in the automobile and aerospace industries owing to their numerous advantageous characteristics, which include low weight, high specific strength, good wear resistance, enhanced resistance to creep, etc. MMCs aid in improving the functionality of industrial parts without adding extra weight to the system. Despite the fact that several distinct types of MMCs have been created over the years, aluminum and magnesium MMCs have emerged as the most promising materials in the aerospace and automotive fields due to their improved tribological performance, low weight, and excellent mechanical properties. However, there are a number of factors that are divided into three categories that affect the tribological behavior of these MMCs, including the reinforcement material (volume fraction, reinforcement type, shape), the operating conditions (sliding speed, normal load), and the environmental conditions (relative humidity and temperature). This study seeks to give a thorough review of the history, categorization, materials, and applications in many fields, as well as the distinct tribological and corrosion behavior of the Al/Mg MMCs under various situations. To pave the way for future researchers working in these sectors, it also outlines the methods and properties used in the study.