A New Synthesis Method for the Fuzzy Tuning of Non Linear PID Controllers

Tounsi-rekik L*, Chibani R**, Chtourou M***
*-*** Department of Electrical Engineering, National School of Engineers, Sfax, Tunisia.
Periodicity:January - March'2009
DOI : https://doi.org/10.26634/jse.3.3.194

Abstract

In this paper a synthesis approach for designing a fuzzy supervised nonlinear PID controller is considered. The objective of this work is to develop a PID based control algorithm for non linear discrete systems using the combination of non conventional and conventional control techniques. The proposed algorithm is a supervised structure, where a fuzzy supervisor provides at each sample time the suitable PID parameters. In order to improve the dynamic response of the closed loop system, the optimization of the performance of the fuzzy supervisor will be considered. Simulation is carried out for a first order non linear process and the speed control of a DC motor with serial excitation.

Keywords

PID Controller, Supervision, Fuzzy System, Optimization

How to Cite this Article?

Tounsi-rekik L, Chibani R, Chtourou M (2009). A New Synthesis Method for the Fuzzy Tuning of Non Linear Pid Controllers, i-manager’s Journal on Software Engineering, 3(3),43-51. https://doi.org/10.26634/jse.3.3.194

References

[1]. Astrom, K. J., & Hagglund, T. (1984). Automatic tuning simple regulators with specifications on phase and amplitude margins. Automatica, 20(5), 645-651.
[2]. Zhuang, M., & Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEEE Proceedings-D, 140(3), 216-224.
[3]. Daley, S., & Liu, G. P. (1998). Optimal PID tuning using direct searchalgorithm. Tuning-in to increase proxtdevelopments in PID tuning,IMechE Seminar, London.
[4]. McCormack, A. S., & Godfrey, K. (1998). Rule-based autotuning based on frequency domain identi"cation. IEEE Transactions on Control Systems Technology, 6(1), 43- 61.
[5]. Ziegler, J. G.; Nichols, N. B. ( 1942) Optimum settings for automatic controllers. Trans. (64), 759-768.
[6]. Voda, A., & Landau, I. D. (1995). A method for the auto-calibration of PID controllers. Automatica, 31(1), 41- 53.
[7]. Mantz, R. J., & Tacconi, E. J. (1989). Complementary rules to Ziegler and Nichols' rules for a regulating and tracking controller. International Journal of Control, 49(5), 1465-1471.
[8]. Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (1989). Process dynamics and control. New York: Wiley.
[9]. Hang, C. C., Astrom, K. J., & Ho, W. K. (1991). Refinements of the Ziegler&Nichols uning formula. IEEE Proceedings-D, 138(2), 111-118.
[10]. Zhuang, M., & Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEEE Proceedings-D, 140(3), 216-224.
[11]. Pessen, D. W. (1994). A new look at PID-controller tuning. Transactions of the American Society of Mechanical Engineers, Journal of Dynamic Systems, Measurement and Control, 116, 553-557.
[12]. Kraus, T. W., & Mayron, T. J. (1984). Self-tuning PID controllers based on a pattern recognition approach. Control Engineering, 106-111.
[13]. Radke, F., & Isermann, R. (1987). A parameteradaptive PID controller with stepwise parameter optimisation. Automatica, 23, 449-457
[14]. McCormack, A. S., & Godfrey, K. (1998). Rule-based autotuning based on frequency domain identi"cation. IEEE Transactions on Control Systems Technology, 6 (1), 43-61.
[15]. G. P. Liu & S. Daley "Optimal-tuning non linear PID control of Hydraulic systems", Control Engineering Practice 8, pp. 1045-1053, 2000.
[16]. S-Y.Oh, D-J.Park " Design of New Adaptive Fuzzy Logic Controller for Non-linear Plants with Unknown or Time- Varying Dead Zones ", IEEE Trans. On Fuzzy Systems, Vol.6, No.4, November 1998.
[17]. S.C. Tong, Q.Li and T.Chai (1999), " Fuzzy Adaptive Control for a Class of Nonlinear Systems", Fuzzy Sets and Systems, 101, 31-39.
[18]. T. Takagi and M. Sugeno (1985), “Fuzzy Identification of Systems and its Applications to Modelling and Control”, IEEE Trans. on systems Man and Cybernetics, 15 (1), 116- 132.
[19]. Bandyopadhyay, R. and Patranabis (1989), D. "A Fuzzy Logic Based PI Autotuner." ISA Transaction, 37, 227- 235.
[20]. Miler, R., Kramer, W., Doblhoff, O. and Bayer, K. (1997), "Strategies for Optimal Dissolved Oxygen (CO) Control." 6th International Conference on Computer Application in Biotechnology, Garmisch Partenkirchen, May 14-17, 315-318.
[21]. Chan, K. C. (1996), "Development of a Feedback Controller Tuner Using Virtual Fuzzy Sets." Computers in Industry, 28, 219-232.
[22]. Ramkumar, K. B. and Chidambaram M. (1995), “Fuzzy Self-tuning PI Controller for Bioreactor.” Bioprocess Engineering, 12, 263-267.
[23]. He, S., Tan, S., Xu, F. and Wang (1993), P. "Fuzzy Selftuning of PID Controllers." Fuzzy Sets and Systems, 56, 37- 46.
[24]. Pfeiffer, B.M. and Isermann (1994), R. "Self-tuning of Classical Controllers with Fuzzy Logic." Math. Comp. in Simu., 37, 101-110.
[25]. S.-Z. He, S. Tan and F.-L. Xu (1993), Fuzzy self-tuning of PID controllers, Fuzzy Sets and Systems 24 (1), 37-46.
[26]. M. S. Ahmed, I. A. Tasadduq (1991) Neuronal-Net Controller for Nonlinear Plants Design Approach through Linearization", IEEE Proc., control applications.
[27]. M. Krstic, I. Kanellakopoulos, and P. Kokotovic (1995) Nonlinear and Adaptive Control Design. New York: Wiley.
[28]. S. S. Ge, C. C. Hang, and T. Zhang, “A direct method for robust adaptive nonlinear control with guaranteed transient performance,” Syst. Contr.Lett., 37, 275–284.
[29]. Kumpati S. Narendra & Kannan Parthasarathy (1990) Identification and Control Dynamical Systems Using Neural Networks", IEEE Trans. on Neural Networks, 1 (1),4-27.
[30]. R. Ketata, D. De Geest and A. Titli, “Fuzzy Controller: Des ign, Evaluat ion, Paral lel and Hierarchical Combination with a PID Controller”, Fuzzy Sets and Systems, Vol. 71, pp. 113-129, 1995.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.