References
[2]. Alam, K., & Lake, R. (2005). Performance of 2 nm gate
length carbon nanotube field-effect transistors with
source∕ drain underlaps. Applied Physics Letters, 87(7), 073104.
[3].
Appenzeller, J., Knoch, J., Derycke, V., Martel, R.,
Wind, S., & Avouris, P. (2002). Field-modulated carrier
transport in carbon nanotube transistors. Physical Review
Letters, 89(12), 126801.
[5].
Appenzeller, J., Lin, Y. M., Knoch, J., Chen, Z., &
Avouris, P. (2005). Comparing carbon nanotube
transistors-the ideal choice: a novel tunneling device
design. IEEE Transactions on Electron Devices, 52(12),
2568-2576.
[9].
Bockrath, M., Hone, J., Zettl, A., McEuen, P. L., Rinzler,
A. G., & Smalley, R. E. (2000). Chemical doping of
individual semiconducting carbon-nanotube ropes.
Physical Review B, 61(16), R10606.
[11].
Chau, R., Datta, S., Doczy, M., Doyle, B., Jin, B.,
Kavalieros, J., ... & Radosavljevic, M. (2005).
Benchmarking nanotechnology for high-performance
and low-power logic transistor applications. IEEE
Transactions on Nanotechnology, 4(2), 153-158.
[12].
Chau, R., Doyle, B., Doczy, M., Datta, S., Hareland,
S., Jin, B., ... & Metz, M. (2003, June). Silicon nanotransistors
and breaking the 10 nm physical gate length
barrier. In 61st Device Research Conference. Conference
Digest (Cat. No. 03TH8663) (pp. 123-126). IEEE.
[13].
Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., & Zhou, C.
(2014). Review of carbon nanotube nanoelectronics and
macroelectronics. Semiconductor Science and
Technology, 29(7), 073001.
[14].
Chen, Z., Appenzeller, J., Solomon, P. M., Lin, Y. M., &
Avouris, P. (2006, June). High performance carbon
nanotube ring oscillator. In 2006 64th Device Research
Conference (pp. 171-172). IEEE.
[15]. Chowdhury, N., Iannaccone, G., Fiori, G.,
Antoniadis, D. A., & Palacios, T. (2017). GaN nanowire n-
MOSFET with 5 nm channel length for applications in
digital electronics. IEEE Electron Device Letters, 38(7), 859-862.
[16].
Chu, C. H., Sarangadharan, I., Regmi, A., Chen, Y.
W., Hsu, C. P., Chang, W. H., ... & Wang, Y. L. (2017).
Beyond the Debye length in high ionic strength solution:
Direct protein detection with field-effect transistors (FETs) in
human serum. Scientific Reports, 7(1), 1-15.
[18].
Ding, L., Zhang, Z., Liang, S., Pei, T., Wang, S., Li, Y., ...
& Peng, L. M. (2012). CMOS-based carbon nanotube
pass-transistor logic integrated circuits. Nature
Communications, 3(1), 677.
[19]. Dresselhaus, G., Dresselhaus, M. S., & Saito, R.
(1998). Physical Properties of Carbon Nanotubes. World
scientific.
[22].
El-Naggar, A., Mansour, A., Wanass, A., & Hassan, S.
(2016, April). Comparative review of carbon nanotube
FETs. In 2016 Third International Conference on Electrical,
Electronics, Computer Engineering and Their
Applications (EECEA) (pp. 57-62). IEEE.
[23].
Franklin, A. D., Luisier, M., Han, S. J., Tulevski, G.,
Breslin, C. M., Gignac, L., ... & Haensch, W. (2012). Sub-10 nm carbon nanotube transistor. Nano Letters, 12(2), 758-762.
[24].
Guo, J., Datta, S., Lundstrom, M., Brink, M., McEuen,
P., Javey, A., ... & McIntyre, P. (2002, December).
Assessment of silicon MOS and carbon nanotube FET
performance limits using a general theory of ballistic
transistors. In Digest. International Electron Devices
Meeting, (pp. 711-714). IEEE.
[26].
Huang, S., Maynor, B., Cai, X., & Liu, J. (2003).
Ultralong, well aligned single walled carbon nanotube
architectureson surfaces. Advanced Materials, 15(19),
1651-1655.
[28].
Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D.,
Lundstrom, M., & Dai, H. (2004). High-field quasiballistic
transport in short carbon nanotubes. Physical Review
Letters, 92(10), 106804.
[29].
Javey, A., Guo, J., Wang, Q., Lundstrom, M., & Dai,
H. (2003). Ballistic carbon nanotube field-effect
transistors. Nature, 424(6949), 654-657.
[30].
Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo,
J., ... & Dai, H. (2002). High-κ dielectrics for advanced
carbon-nanotube transistors and logic gates. Nature
Materials, 1(4), 241-246.
[31].
Kalbacova, M., Kalbac, M., Dunsch, L., Kataura, H.,
& Hempel, U. (2006). The study of the interaction of
human mesenchymal stem cells and monocytes/macrophages with single walled carbon nanotube films.
Physica Status Solidi (B), 243(13), 3514-3518.
[32].
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., & Dai,
H. (1998). Synthesis of individual single-walled carbon
nanotubes on patterned silicon wafers. Nature,
395(6705), 878-881.
[33].
Koswatta, S. O., Valdes-Garcia, A., Steiner, M. B., Lin,
Y. M., & Avouris, P. (2011). Ultimate RF performance
potential of carbon electronics. IEEE Transactions on
Microwave Theory and Techniques, 59(10), 2739-2750.
[34]. Léonard, F. (2008). Physics of Carbon Nanotube
Devices. William Andrew.
[35].
Lin, Y., Taylor, S., Li, H., Fernando, K. S., Qu, L., Wang,
W., ... & Sun, Y. P. (2004). Advances toward
bioapplications of carbon nanotubes. Journal of
Materials Chemistry, 14(4), 527-541.
[38].
Luo, J., Wei, L., Lee, C. S., Franklin, A. D., Guan, X.,
Pop, E., ... & Wong, H. S. P. (2013). Compact model for
carbon nanotube field-effect transistors including
nonidealities and calibrated with experimental data
down to 9-nm gate length. IEEE Transactions on Electron
Devices, 60(6), 1834-1843.
[39]. Macilwain, C. (2005). Computer hardware: silicon
down to the wire. Nature, 436, 22-23.
[41].
Martel, R., Derycke, V., Appenzeller, J., Wind, S., &
Avouris, P. (2002, June). Carbon nanotube field-effect
transistors and logic circuits. In Proceedings of the 39th
Annual Design Automation Conference (pp. 94-98).
[42]. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., &
Avouris, P. (1998). Single-and multi-wall carbon nanotube
field-effect transistors. Applied Physics Letters, 73(17),
2447-2449.
[49]. Peng, H. B., Hughes, M. E., & Golovchenko, J. A.
(2006). Room-temperature single charge sensitivity in
carbon nanotube field-effect transistors. Applied Physics
Letters, 89(24), 243502.
[53].
Radosavljevic, M., Chu-Kung, B., Corcoran, S.,
Dewey, G., Hudait, M. K., Fastenau, J. M., ... & Chau, R.
(2009, December). Advanced high-K gate dielectric for
high-performance short-channel In 0.7 Ga 0.3 as
quantum well field effect transistors on silicon substrate for
low power logic applications. In 2009 IEEE International
Electron Devices Meeting (IEDM) (pp. 1-4). IEEE.
[54]. Ren, Z. (2003a). Inversion channel mobility in high-k
high performance MOSFETs. In IEEE International Electron
Meeting, 2003.
[55].
Ren, Z. (2003b). A., Guo, J., Farmer, D. B., Wang, Q.,
Yenilmez, E., Gordon, R. G., ... & Dai, H. (2004). Selfaligned
ballistic molecular transistors and electrically
parallel nanotube arrays. Nano Letters, 4(7), 1319-1322.
[57].
Schroter, M., Claus, M., Sakalas, P., Haferlach, M., &
Wang, D. (2013). Carbon nanotube FET technology for
radio-frequency electronics: State-of-the-art overview.
IEEE Journal of the Electron Devices Society, 1(1), 9-20.
[61].
Stephan, O., Ajayan, P. M., Colliex, C., Redlich, P.,
Lambert, J. M., Bernier, P., & Lefin, P. (1994). Doping
graphitic and carbon nanotube structures with boron and
nitrogen. Science, 266(5191), 1683-1685.
[62]. Streetman, B. G., & Banerjee, S. (2000). Solid State
Electronic Devices (Vol. 4). Prentice hall, New Jersey.
[63].
Sun, D. M., Timmermans, M. Y., Tian, Y., Nasibulin, A.
G., Kauppinen, E. I., Kishimoto, S., ... & Ohno, Y. (2011).
Flexible high-performance carbon nanotube integrated
circuits. Nature Nanotechnology, 6(3), 156-161.
[64]. Svensson, J. (2010). Carbon Nanotube Transistors:
Nanotube Growth, Contact Properties and Novel Devices
(Doctoral thesis, University of Gothenburg).
[67].
Tulevski, G. S., Franklin, A. D., Frank, D., Lobez, J. M.,
Cao, Q., Park, H., ... & Haensch, W. (2014). Toward highperformance
digital logic technology with carbon
nanotubes. ACS Nano, 8(9), 8730-8745.
[69]. Wind, S. J., Appenzeller, J., Martel, R., Derycke, V., &
Avouris, P. (2002). Vertical scaling of carbon nanotube
field-effect transistors using top gate electrodes. Applied
Physics Letters, 80(20), 3817-3819.
[71]. Yang, M. H., Teo, K. B., Gangloff, L., Milne, W. I.,
Hasko, D. G., Robert, Y., & Legagneux, P. (2006).
Advantages of top-gate, high-k dielectric carbon
nanotube field-effect transistors. Applied Physics Letters,
88(11), 113507.
[72].
Yang, N., Chen, X., Ren, T., Zhang, P., & Yang, D.
(2015). Carbon nanotube based biosensors. Sensors and
Actuators B: Chemical, 207, 690-715.
[73].
Zhang, J., Lin, A., Patil, N., Wei, H., Wei, L., Wong, H. S.
P., & Mitra, S. (2012). Carbon nanotube robust digital VLSI.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 31(4), 453-471.
[74]. Zhang, Z. Y., Wang, S., Ding, L., Liang, X. L., Xu, H. L.,
Shen, J., ... & Peng, L. M. (2008). High-performance ntype
carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Applied Physics Letters,
92(13), 133117.
[75].
Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y.,
... & Peng, L. M. (2007). Doping-free fabrication of carbon
nanotube based ballistic CMOS devices and circuits.
Nano Letters, 7(12), 3603-3607.
[76].
Zhang, Z., Wang, S., Ding, L., Liang, X., Pei, T., Shen,
J., ... & Peng, L. M. (2008). Self-aligned ballistic n-type
single-walled carbon nanotube field-effect transistors
with adjustable threshold voltage. Nano Letters, 8(11),
3696-3701.
[77].
Zhang, Z., Wang, S., Wang, Z., Ding, L., Pei, T., Hu, Z.,
... & Peng, L. M. (2009). Almost perfectly symmetric
SWCNT-based CMOS devices and scaling. ACS Nano,
3(11), 3781-3787.