References
[1]. Berkenkamp, F., Turchetta, M., Schoellig, A., & Krause,
A. (2017). Safe model-based reinforcement learning with
stability guarantees. Advances in Neural Information
Processing Systems, 30, 1-11.
[2]. Guo, J., Zenelis, I., Wang, X., & Ooi, B. T. (2020). WAMSbased
model-free wide-area damping control by
voltage source converters. IEEE Transactions on Power
Systems, 36(2), 1317-1327. https://doi.org/10.1109/TPWRS.2020.3012917
[3]. Harrold, D. J., Cao, J., & Fan, Z. (2022). Renewable
energy integration and microgrid energy trading using
multi-agent deep reinforcement learning. Applied
Energy, 318, 119151. https://doi.org/10.1016/j.apenergy.2022.119151
[4]. Jawahir, I. S., Balaji, A. K., Rouch, K. E., & Baker, J. R.
(2003). Towards integration of hybrid models for optimized
machining performance in intelligent manufacturing systems. Journal of Materials Processing Technology,
139(1-3), 488-498. https://doi.org/10.1016/S0924-0136(03)00525-9
[5]. Kuhnle, A., Kaiser, J. P., Theiß, F., Stricker, N., & Lanza,
G. (2021). Designing an adaptive production control
system using reinforcement learning. Journal of Intelligent
Manufacturing, 32, 855-876. https://doi.org/10.1007/s10845-020-01612-y
[6]. Li, T., Wang, Z., Lu, W., Zhang, Q., & Li, D. (2022).
Electronic health records based reinforcement learning
for treatment optimizing. Information Systems, 104, 101878. https://doi.org/10.1016/j.is.2021.101878
[7]. Liu, Q., Dong, M., & Chen, F. F. (2018). Singlemachine-
based joint optimization of predictive
maintenance planning and production scheduling.
Robotics and Computer-Integrated Manufacturing, 51,
238-247. https://doi.org/10.1016/j.rcim.2018.01.002
[8]. Pamsari, H. K., Bidgoli, M. A., Rajabzadeh, M.,
Bathaee, S. M. T., & Ozgoli, S. (2011, February).
Application of a new multivariable sliding mode controller
for the single machine infinite bus systems. In 2011 2nd
Power Electronics, Drive Systems and Technologies
Conference (pp. 211-216). IEEE. https://doi.org/10.1109/PEDSTC.2011.5742420
[9]. Wei, C., Zhang, Z., Qiao, W., & Qu, L. (2015). Reinforcement-learning-based intelligent maximum
power point tracking control for wind energy conversion
systems. IEEE Transactions on Industrial Electronics, 62(10),
6360-6370. https://doi.org/10.1109/TIE.2015.2420792
[10]. Xiong, R., Cao, J., & Yu, Q. (2018). Reinforcement
learning-based real-time power management for hybrid
energy storage system in the plug-in hybrid electric
vehicle. Applied Energy, 211, 538-548. https://doi.org/10.1016/j.apenergy.2017.11.072
[11]. Younesi, A., Shayeghi, H., & Moradzadeh, M. (2018).
Application of reinforcement learning for generating
optimal control signal to the IPFC for damping of lowfrequency
oscillations. International Transactions on
Electrical Energy Systems, 28(2), e2488. https://doi.org/10.1002/etep.2488
[12]. Zhang, B., Hu, W., Ghias, A. M., Xu, X., & Chen, Z.
(2022). Multi-agent deep reinforcement learning-based
coordination control for grid-aware multi-buildings.
Applied Energy, 328, 120215. https://doi.org/10.1016/j.apenergy.2022.120215
[13]. Zhao, L., Yang, T., Li, W., & Zomaya, A. Y. (2022). Deep
reinforcement learning-based joint load scheduling for
household multi-energy system. Applied Energy, 324,
119346. https://doi.org/10.1016/j.apenergy.2022.119346