References
[1]. Ahmed, M. M., Abdel Raheem, S. E., Ahmed, M. M., &
Abdel Shafy, A. G. (2016). Irregularity effects on the
seismic performance of L-shaped multi-story buildings.
JES. Journal of Engineering Sciences, 44(5), 513-536.
https://doi.org/10.21608/JESAUN.2016.111440
[2]. Asadi-Ghoozhdi, H., & Attarnejad, R. (2020). The
effect of nonlinear soil–structure interaction on the
ductility and strength demands of vertically irregular
structures. International Journal of Civil Engineering, 18,
1209-1228. https://doi.org/10.1007/s40999-020-00529-0
[3]. Branco, M., & Guerreiro, L. M. (2011). Seismic
rehabilitation of historical masonry buildings. Engineering
Structures, 33(5), 1626-1634. https://doi.org/10.1016/j.engstruct.2011.01.033
[4]. Chopra, A. K., & Goel, R. K. (2002). A modal pushover
analysis procedure for estimating seismic demands for
buildings. Earthquake Engineering & Structural Dynamics,
31(3), 561-582. https://doi.org/10.1002/eqe.144
[5]. Colapietro, D., Netti, A., Fiore, A., Fatiguso, F., &
Marano, G. C. (2014). On the definition of seismic
recovery interventions in rc buildings by non-linear static
and incremental dynamic analyses. International Journal
of Mechanics, 8, 216-222.
[6]. Das, P. K., Dutta, S. C., & Datta, T. K. (2021). Seismic
behavior of plan and vertically irregular structures: state of
art and future challenges. Natural Hazards Review, 22(2),
04020062. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000440
[7]. De Stefano, M., & Mariani, V. (2014). Pushover analysis
for plan irregular building structures. Perspectives on European Earthquake Engineering and Seismology, 34,
429-448.
[8]. Di Sarno, L., & Manfredi, G. (2010). Seismic retrofitting
with buckling restrained braces: Application to an existing
non-ductile RC framed building. Soil Dynamics and
Earthquake Engineering, 30(11), 1279-1297. https://doi.org/10.1016/j.soildyn.2010.06.001
[9]. Kreslin, M., & Fajfar, P. (2010). Seismic evaluation of an
existing complex RC building. Bulletin of Earthquake
Engineering, 8, 363-385. https://doi.org/10.1007/s10518-009-9155-0
[10]. Moehle, J., & Deierlein, G. G. (2004, August). A
framework methodology for performance-based
earthquake engineering. In 13th World Conference on
Earthquake Engineering (Vol. 679, pp. 12). WCEE
Vancouver.
[11]. Mohod, M. V. (2015). Pushover analysis of structures
with plan irregularity. IOSR Journal of Mechanical and Civil
Engineering (IOSR-JMCE), 12(4), 46-55. https://doi.org/10.9790/1684-12474655
[12]. Montuori, R., Nastri, E., Piluso, V., & Todisco, P. (2020).
A simplified performance based approach for the
evaluation of seismic performances of steel frames.
Engineering Structures, 224, 111222. https://doi.org/10.1016/j.engstruct.2020.111222
[13]. Pujades, L. G., Vargas-Alzate, Y. F., Barbat, A. H., &
González-Drigo, J. R. (2015). Parametric model for capacity curves. Bulletin of Earthquake Engineering, 13,
1347-1376. https://doi.org/10.1007/s10518-014-9670-5
[14]. Puthanpurayil, A. M., Lavan, O., & Dhakal, R. P.
(2020). Multi-objective loss-based optimization of viscous
dampers for seismic retrofitting of irregular structures. Soil
Dynamics and Earthquake Engineering, 129, 105765.
https://doi.org/10.1016/j.soildyn.2019.105765
[15]. Raagavi, M. T., & Sidhardhan, S. (2021). A study on
seismic performance of various irregular structure.
International Journal of Research in Engineering and
Science, 9(5), 12-19.
[16]. Shehu, R. (2021). Implementation of pushover
analysis for seismic assessment of masonry towers: Issues
and practical recommendations. Buildings, 11(2), 71.
https://doi.org/10.3390/buildings11020071
[17]. Themelis, S. (2008). Pushover Analysis for Seismic
Assessment and Design of Structures (Doctoral
dissertation, Heriot-Watt University).
[18]. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental
dynamic analysis. Earthquake Engineering & Structural
Dynamics, 31(3), 491-514. https://doi.org/10.1002/eqe.141
[19]. Zucconi, M., Sorrentino, L., & Ferlito, R. (2017).
Principal component analysis for a seismic usability
model of unreinforced masonry buildings. Soil Dynamics
and Earthquake Engineering, 96, 64-75. https://doi.org/10.1016/j.soildyn.2017.02.014