References
[1]. Ahmed, S., Hossain, M. F., Kaiser, M. S., Noor, M. B. T.,
Mahmud, M., & Chakraborty, C. (2021). Artificial
intelligence and machine learning for ensuring security in
smart cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities: Trends and Advances
(pp. 23-47). Cham: Springer International Publishing.
[2]. Anastasi, S., Madonna, M., & Monica, L. (2021).
Implications of embedded artificial intelligencemachine
learning on safety of machinery. Procedia
Computer Science, 180, 338-343.
[3]. Fischer, M., Heim, D., Hofmann, A., Janiesch, C.,
Klima, C., & Winkelmann, A. (2020). A taxonomy and
archetypes of smart services for smart living. Electronic
Markets, 30(1), 131–149. https://doi.org/10.1007/s12525-019-00384-5.
[4]. Fuchs, D. J. (2018). The dangers of human-like Bias in
machine-learning algorithms. Missouri S & T's Peer to Peer,
2(1), 15.
[5]. Howard, A., Zhang, C., & Horvitz, E. (2017). Addressing
bias in machine learning algorithms: A pilot study on
emotion recognition for intelligent systems. IEEE Workshop
on Advanced Robotics and its Social Impacts (ARSO),
1–7. https://doi.org/10.1109/ARSO.2017.8025197
[6]. Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O.,
Ishizu, K., & Kojima, F. (2018). Big data analytics, machine
learning, and artificial intelligence in next-generation
wireless networks. IEEE access, 6, 32328-32338.
[7]. Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006).
Machine learning: A review of classification and
combining techniques. Artificial Intelligence Review,
26(3), 159–190. https://doi.org/10.1007/s10462-007-9052-3.
[8]. Kühl, N., Mühlthaler, M., & Goutier, M. (2020).
Supporting customer-oriented marketing with artificial
intelligence: Automatically quantifying customer needs
from social media. Electronic Markets, 30(2), 351–367.
https://doi.org/10.1007/s12525-019-00351-0.
[9]. Martens, B. (2018). The importance of data access
regimes for artificial intelligence and machine learning.
JRC Digital Economy Working Paper (pp. 23). https://doi.org/10.2139/ssrn.3357652
[10]. Ongsulee, P. (2017, November). Artificial
intelligence, machine learning and deep learning. In
2017 15th international conference on ICT and
knowledge engineering (ICT&KE) (pp. 1-6). IEEE.
[11]. Peters, M., Ketter, W., Saar-Tsechansky, M., & Collins,
J. (2013). A reinforcement learning approach to
autonomous decision-making in smart electricity
markets. Machine Learning, 92(1), 5-39. https://doi.org/10.1007/s10994-013-5340-0.
[12]. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y.,
Reyes, M. P., Shyu, M.-L., Chen, S.-C., & Iyengar, S.S.
(2019). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys,
51(5), 1–36. https://doi.org/10.1145/3234150.
[13]. Rawat, D. B. (2021, April). Secure and trustworthy
machine learning/artificial intelligence for multi-domain
operations. In Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications III
(Vol.11746, pp. 44-54). SPIE.