References
[1]. Ahmed, N., Rafiq, J. I., & Islam, M. R. (2020).
Enhanced human activity recognition based on
smartphone sensor data using hybrid feature selection
model. Sensors, 20(1), 317. https://doi.org/10.3390/s20010317
[2]. Berchtold, M., Günther, H., Budde, M., & Beigl, M. (2011). Scheduling for a modular activity recognition
system to reduce energy consumption on smartphones.
In ARCS Workshops, (pp. 8).
[3]. Botilias, G. P., Pappa, L., Karvelis, P., & Stylios, C. (2022,
September). Tracking individuals' health using mobile
applications and machine learning. In 2022 7th South-East
Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference
(SEEDA-CECNSM) (pp. 1-6). IEEE. https://doi.org/10.1109/SEEDA-CECNSM57760. 2022.9932927
[4]. Concone, F., Gaglio, S., Lo Re, G., & Morana, M.
(2017). Smartphone data analysis for human activity
recognition. In AI* IA 2017 Advances in Artificial
Intelligence: XVIth International Conference of the Italian
Association for Artificial Intelligence, (pp. 58-71). Springer
International Publishing. https://doi.org/10.1007/978-3-319-70169-1_5
[5]. Ferrari, A., Micucci, D., Mobilio, M., & Napoletano, P.
(2021). Trends in human activity recognition using
smart phones. Journal of Reliable Intelligent
Environments, 7(3), 189-213. https://doi.org/10.1007/s40860-021-00147-0
[6]. Kadri, N., Ellouze, A., & Ksantini, M. (2020, October).
Recommendation system for human physical activities
using smartphones. In 2020 2nd International Conference
on Computer and Information Sciences (ICCIS) (pp. 1-4).
IEEE. https://doi.org/10.1109/ICCIS49240.2020.9257671
[7]. Khan, R., Hussain, R., Joon, S., & Tyagi, R. K. (2019). A
new way to resolve real time traffic control system by using
machine learning approach. International Journal of
Research in Advent Technology, 7(10), 1-4. https://doi.org/10.32622/ijrat.710201909
[8]. Nematallah, H., Rajan, S., & Cretu, A. M. (2019,
October). Logistic model tree for human activity
recognition using smartphone-based inertial sensors. In
2019 IEEE Sensors (pp. 1-4). IEEE. https://doi.org/10.1109/SENSORS43011.2019.8956951
[9]. Nithya, A. A., Ishwarya, K., Mummaneni, G., & Verma,
V. (2022, October). CNN based identifying human activity
using smartphone sensors. In 2022 International
Conference on Edge Computing and Applications (ICECAA) (pp. 1115-1120). IEEE. https://doi.org/10.1109/ICECAA55415.2022.9936202
[10]. Qi, W., Su, H., & Aliverti, A. (2020). A smartphonebased
adaptive recognition and real-time monitoring
system for human activities. IEEE Transactions on Human-
Machine Systems, 50(5), 414-423. https://doi.org/10.1109/THMS.2020.2984181
[11]. Rabbi, J., Fuad, M., Hasan, T., & Awal, M. (2021). Human activity analysis and recognition from
smartphones using machine learning techniques. arXiv
preprint arXiv:2103.16490. https://doi.org/10.48550/arXiv.2103.16490
[12]. Straczkiewicz, M., James, P., & Onnela, J. P. (2019). A
systematic review of smartphone-based human activity
recognition for health research. arXiv preprint arXiv: 1910.03970. https://doi.org/10.48550/arXiv.1910.03970