References
[1]. Aizawa, A. (2003). An information-theoretic
perspective of tf–idf measures. Information Processing &
Management, 39(1), 45-65. https://doi.org/10.1016/S0306-4573(02)00021-3
[2]. Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017,
April). Deep learning for hate speech detection in tweets.
In Proceedings of the 26th International Conference on
World Wide Web Companion (pp. 759-760). https://doi.org/10.1145/3041021.3054223
[3]. Caselli, T., Basile, V., Mitrović, J., & Granitzer, M.
(2020). Hatebert: Retraining bert for abusive language
detection in english. arXiv preprint arXiv:2010.12472.
https://doi.org/10.48550/arXiv.2010.12472
[4]. Davidson, T., Bhattacharya, D., & Weber, I. (2019).
Racial bias in hate speech and abusive language
detection datasets. arXiv preprint arXiv:1905.12516.
https://doi.org/10.48550/arXiv.1905.12516
[5]. Davidson, T., Warmsley, D., Macy, M., & Weber, I.
(2017, May). Automated hate speech detection and the
problem of offensive language. In Proceedings of the
International AAAI Conference on Web and Social
Media, 11(1), 512-515. https://doi.org/10.1609/icwsm.v11i1. 14955
[6]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805
[7]. Gambäck, B., & Sikdar, U. K. (2017, August). Using
convolutional neural networks to classify hate-speech. In
Proceedings of the First Workshop on Abusive Language
Online (pp. 85-90). https://doi.org/10.18653/v1/W17-3013
[8]. Hugging Face. (n.d.). Bert Base Cased. Retrieved
from https://huggingface.co/bert-base-cased
[9]. Malik, J. S., Pang, G., & Hengel, A. V. D. (2022). Deep
learning for hate speech detection: A comparative study.
arXiv preprint arXiv:2202.09517. https://doi.org/10.48550/arXiv.2202.09517
[10]. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &
Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. Advances in Neural
Information Processing Systems, 26, 1-9.
[11]. Mittos, A., Zannettou, S., Blackburn, J., & De
Cristofaro, E. (2020, May). “And we will fight for our race!” A
measurement study of genetic testing conversations on
Reddit and 4chan. In Proceedings of the International
AAAI Conference on Web and Social Media (Vol. 14, pp.
452-463). https://doi.org/ 10.1609/icwsm.v14i1.7314
[12]. Mozafari, M., Farahbakhsh, R., & Crespi, N. (2020). A
BERT-based transfer learning approach for hate speech
detection in online social media. In Complex Networks
and their Applications VIII: Volume 1 Proceedings of the
Eighth International Conference on Complex Networks
and Their Applications COMPLEX NETWORKS 2019 (pp.
928-940). Springer International Publishing. https://doi.org/10.1007/978-3-030-36687-2_77
[13]. Ottoni, R., Cunha, E., Magno, G., Bernardina, P., Meira Jr, W., & Almeida, V. (2018, May). Analyzing rightwing
youtube channels: Hate, violence and
discrimination. In Proceedings of the 10th ACM
Conference on Web Science (pp. 323-332). https://doi.org/10.1145/ 3201064.3201081
[14]. Pennington, J., Socher, R., & Manning, C. D. (2014,
October). Glove: Global vectors for word representation.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (pp.
1532-1543).
[15]. Radford, A., Narasimhan, K., Salimans, T., &
Sutskever, I. (2018). Improving Language Understanding
by Generative Pre-Training. Retrieved from https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
[16]. Waseem, Z., & Hovy, D. (2016, June). Hateful
symbols or hateful people? Predictive features for hate
speech detection on twitter. In Proceedings of the NAACL
Student Research Workshop (pp. 88-93).
[17]. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... &
He, Q. (2020). A comprehensive survey on transfer
learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/JPROC.2020.3004555