References
[1]. Amourizi, F., Dashtian, K., Ghaedi, M., &
Hosseinzadeh, B. (2021). An asymmetric Schiff basefunctionalized
gold nanoparticle-based colorimetric
sensor for Hg 2+ ion determination: Experimental and DFT
studies. Analytical Methods, 13(23), 2603-2611.
https://doi.org/10.1039/ D1AY00408E
[2]. Chen, H., Song, Y., & Li, X. (2019). A deep learning framework for identifying children with ADHD using an EEGbased
brain network. Neurocomputing, 356, 83-96.
https://doi.org/10.1016/j.neucom.2019.04.058
[3]. Fuyal, M., & Giri, B. (2020). A combined system of
paper device and portable spectrometer for the
detection of pesticide residues. Food Analytical Methods,
13(7), 1492-1502. https://doi.org/10.1007/s12161-020-01770-y
[4]. Haider, A., Ahmed, M., Faisal, M., & Naseer, M. M.
(2020). Isatin as a simple, highly selective and sensitive
colorimetric sensor for fluoride anion. Heterocyclic
Communications, 26(1), 14-19. https://doi.org/10.1515/hc-2020-0003
[5]. Lin, B., Yu, Y., Cao, Y., Guo, M., Zhu, D., Dai, J., &
Zheng, M. (2018). Point-of-care testing for streptomycin
based on aptamer recognizing and digital image
colorimetry by smartphone. Biosensors and Bioelectronics,
100, 482-489. https://doi.org/10.1016/j. bios.2017.09.028
[6]. Mahato, K., & Chandra, P. (2019). Paper-based
miniaturized immunosensor for naked eye ALP detection
based on digital image colorimetry integrated with
smartphone. Biosensors and Bioelectronics, 128, 9-16.
https://doi.org/10.1016/j.bios.2018.12.006
[7]. Oliveira, G. C., Machado, C. C. S., Inácio, D. K.,
Petruci, J. F. S., & Silva, S. G. (2022). RGB color sensor for
colorimetric determinations: Evaluation and quantitative
analysis of colored liquid samples. Talanta, 241, 123244.
https://doi.org/10.1016/j.talanta.2022.123244
[8]. Phatthanawiwat, K., Boonkanon, C., Wongniramaikul,
W., & Choodum, A. (2022). Catechin and curcumin
nanoparticle-immobilized starch cryogels as green
colorimetric sensors for on-site detection of iron.
Sustainable Chemistry and Pharmacy, 29, 100782.
https://doi.org/10.1016/j.scp.2022.100782
[9]. Spica, N., Green, M., Lown, L., Duwal, R., Fuyal, M.,
Giri, S., ... & Lamichhane-Khadka, R. (2021).
Development of a microbiological paper-based
analytical device to detect fecal contamination of water
in resource-limited settings. Water, Air, & Soil Pollution,
232, 1-12. https://doi.org/10.1007/s11270-021-05132-0
[10]. Tao, Y., Li, M., Kim, B., & Auguste, D. T. (2017). Incorporating gold nanoclusters and target-directed
liposomes as a synergistic amplified colorimetric sensor
for HER2-positive breast cancer cell detection.
Theranostics, 7(4), 899-911. https://doi.org/10.7150/thno.17927
[11]. Taweekarn, T., Wongniramaikul, W., & Choodum, A.
(2022). Removal and recovery of phosphate using a
novel calcium silicate hydrate composite starch cryogel.
Journal of Environmental Management, 301, 113923.
https://doi.org/10.1016/j.jenvman.2021.113923
[12]. Urapen, R., & Masawat, P. (2015). Novel method for
the determination of tetracycline antibiotics in bovine milk
based on digital-image-based colorimetry. International Dairy Journal, 44, 1-5. https://doi.org/10.1016/j.idairyj.2014.12.002
[13]. Wang, K., He, J., & Zhang, L. (2019). Attention-based
convolutional neural network for weakly labeled human
activities' recognition with wearable sensors. IEEE Sensors
Journal, 19(17), 7598-7604. https://doi.org/10.1109/JSEN.2019.2917225
[14]. Zhang, Q., Yu, Y., Yun, X., Luo, B., Jiang, H., Chen, C.,
... & Min, D. (2020). Multicolor colorimetric sensor for
detection of omethoate based on the inhibition of the
enzyme-induced metallization of gold nanorods. ACS
Applied Nano Materials, 3(6), 5212-5219. https://doi.org/10.1021/acsanm.0c00641