References
[1].
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A., & Hamed,
H. F. (2019). A review on brain tumor diagnosis from MRI
images: Practical implications, key achievements, and
lessons learned. Magnetic Resonance Imaging, 61, 300-318.
[4]. Armato, S., Beichel, R., Bidaut, L., Clarke, L., Croft, B.,
Fenimore, C., ... & Kinahan, P. (2008). RIDER (Reference
database to evaluate response) committee combined
report 9/25/2008 sponsored by NIH NCI CIP ITDB causes of
and methods for estimating/ameliorating Variance in the
Evaluation of Tumor Change in Response to Therapy CT
Volume. Academic Radiology, 84(1), 1-14.
[5]. Bandhyopadhyay, S. K., & Paul, T. U. (2013).
Automatic segmentation of brain tumour from multiple
images of brain MRI. International Journal of Application
or Innovation in Engineering & Management, 2(1), 240-280.
[6].
Chaturvedi, P., Jhamb, A., Vanani, M., & Nemade, V.
(2021, March). Prediction and classification of lung
cancer using machine learning techniques. In IOP
Conference Series: Materials Science and Engineering,
1099(1), 012059. IOP Publishing.
[9].
Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2021, February).
A deep learning approach for brain tumor classification
and segmentation using a multiscale convolutional
neural network. In Healthcare, 9(2), 153. MDPI.
[11].
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., ... & Larochelle, H. (2017). Brain
tumor segmentation with deep neural networks. Medical
Image Analysis, 35, 18-31.
[12]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 770-778).
[14]. Kadam, M., & Dhole, A. (2017). Brain tumor
detection using GLCM with the help of KSVM. International
Journal of Engineering and Technical Research, 7(2),
2454-4698.
[16]. Kole, D. K., & Halder, A. (2012). Automatic brain
tumor detection and isolation of tumor cells from MRI
images. International Journal of Computer Applications,
39(16), 26-30.
[19]. Logeswari, T., & Karnan, M. (2010). An improved
implementation of brain tumor detection using
segmentation based on hierarchical self organizing map.
International Journal of Computer Theory and Engineering, 2(4), 591-595.
[20]. Logeswari, T., & Karnan, M. (2010). An improved
implementation of brain tumor detection using
segmentation based on hierarchical self organizing map.
International Journal of Computer Theory and
Engineering, 2(4), 591-595.
[29]. Paul, T. U., & Bandhyopadhyay, S. K. (2012).
Segmentation of brain tumor from brain MRI images
reintroducing K–means with advanced dual localization
method. International Journal of Engineering Research
and Applications, 2(3), 226-231.
[30]. Prajapati, S. J., & Jadhav, K. R. (2015). Brain tumor
detection by various image segmentation techniques
with introduction to non negative matrix factorization.
Brain, 4(3), 600-603.
[32]. Rangarajan, A. K., & Ramachandran, H. K. (2022). A
fused lightweight CNN model for the diagnosis of COVID-19 using CT scan images. Automatika: Časopis Za
Automatiku, Mjerenje, Elektroniku, Računarstvo I
Komunikacije, 63(1), 171-184.
[33].
Rehman, Z. U., Naqvi, S. S., Khan, T. M., Khan, M. A., &
Bashir, T. (2019). Fully automated multi-parametric brain
tumour segmentation using superpixel based
classification. Expert Systems with Applications, 118, 598-613.
[34].
Ren, S., Jain, D. K., Guo, K., Xu, T., & Chi, T. (2019).
Towards efficient medical lesion image super-resolution
based on deep residual networks. Signal Processing:
Image Communication, 75, 1-10.
[42].
Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z.,
Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR
images using transfer learning and fine-tuning.
Computerized Medical Imaging and Graphics, 75, 34-46.
[43].
Tustison, N. J., Shrinidhi, K. L., Wintermark, M., Durst,
C. R., Kandel, B. M., Gee, J. C., ... & Avants, B. B. (2015).
Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor
segmentation (simplified) with ANTsR. Neuroinformatics,
13, 209-225.
[44]. Vasuda, P., & Satheesh, S. (2010). Improved fuzzy Cmeans
algorithm for MR brain image segmentation.
International Journal on Computer Science and
Engineering, 2(5), 1713-1715.
[46].
Wei, S., Zhou, X., Wu, W., Pu, Q., Wang, Q., & Yang, X.
(2018). Medical image super-resolution by using multidictionary
and random forest. Sustainable Cities and
Society, 37, 358-370.
[47].
Zeng, K., Zheng, H., Cai, C., Yang, Y., Zhang, K., &
Chen, Z. (2018). Simultaneous single-and multi-contrast
super-resolution for brain MRI images based on a
convolutional neural network. Computers in Biology and
Medicine, 99, 133-141.
[48].
Zhang, Y., Yap, P. T., Chen, G., Lin, W., Wang, L., &
Shen, D. (2019). Super-resolution reconstruction of
neonatal brain magnetic resonance images via residual
structured sparse representation. Medical Image
Analysis, 55, 76-87.
[49].
Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., & Fan, Y.
(2018). A deep learning model integrating FCNNs and
CRFs for brain tumor segmentation. Medical Image
Analysis, 43, 98-111.