References
[1]. Damil, N., Potier-Ferry, M., Najah, A., Chari, R., and Lahmam, H. (1999). “An Iterative Method Based upon Padé Approximants”, Int. J. for Num. Meth. Engng., Vol.45, pp.701-708.
[2]. Pollandt, R. (1997). "Solving Nonlinear Differential Equations of Mechanics with the Boundary Element Method and Radial Basis Functions", Int. J. Num. Meth. Engng., Vol. 40, pp. 61-73.
[3]. Bauer, H.F. (1968). “Non-linear response of elastic plates to pulse excitations”, Trans. ASME, J. Applied Mechanics. pp. 47-52.
[4]. Kobajashi, K., and Leissa, A.W. (1995). “Large amplitude free vibration of thick shallow shells supported by shear diaphragms”, Int. J. Non-linear Mech. Vol.30. pp. 57-66.
[5]. Prathap, G., and Pandalai, K.A.V. (1979). “Non-linear vibrations of transversely isotropic rectangular plates” Int. J. Non-linear Mech. Vol.13. pp. 285-294.
[6]. Wang. C.T. (1948). “Bending of rectangular plates with large deflection”, NACA TN-1462.
[7]. Ribeiro, P., and Petyt, M. (2000). “Non-linear free vibration of isotropic plates with internal resonance”, Int. J. Non-linear Mech. Vol.35. pp. 263-278.
[8]. Ganapathi, M., Patel, B.P., Boisse, P., and Touratier, M., (2000). “Non-linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load”, Int. J. Non-linear Mech. Vol. 35. pp. 467-480.
[9]. Vannucci, P., Cochelin, B., Damil, N., and Potier-Ferry, M. (1998). “An Asymptotic-Numerical Method to Compute Bifurcating Branches”, Int. J. for Num. Meth. Engng. Vol. 41. pp.1365-1389.
[10]. Chu, H.N., and Herrmann, G. (1956). “Influence of large amplitude on free flexural vibrations of rectangular elastic plates”, J. Appl. Mech. Vol. 23. pp. 532-540.
[11]. Murthy, S.D.N., and Sherbourne, A.N. (1974). “Nonlinear Bending of Elastic Plates of Variable Profile”, Proc. ASCE, J. Engg. Mech. Div. Vol.100. No. EM2, pp. 251-265.
[12]. Turvey, G.J. (1978). “Large Deflection of Tapered Annular Plates by Dynamic Relaxation”, Proc. ASCE, J. Engg. Mech. Div. Vol.104. No.EM2, pp.351-366.
[13]. Little, G.H. (1987). “Efficient Large Deflection Analysis of Rectangular Orthotropic Plates by Direct Energy Minimisation”, Computer and Structures, Vol. 26, pp.871-884.
[14]. Koko, T.S., and Olson, M.D. (1991). “Non-Linear Analysis of Stiffened Plates using Super Elements”, Int. J. Num. Meth. Engng., Vol. 31, pp.319-349.
[15]. Soper, W.G. (1958). “Large deflection of stiffened plates”, Trans. ASME, Journal of Applied Mechanics, Dec., pp.444-448.
[16]. Prathap, G., and Varadan, T.K. (1978). “Large Amplitude Flexural Vibration of Stiffened Plates”, Jl. Of Sound and Vibration, Vol. 57(4), pp.583-593.
[17]. Coleby, J.R., and Mazumdar, J. (1982). “Non-Linear Vibrations of Elastic Plates Subjected to Transient Pressure Loading”, Jl. Of Sound and Vibration, Vol. 80(2), pp.193-201.
[18]. Jiang, J., and Olson, M.D. (1991). “Nonlinear Dynamic Analysis of Blast Loading Cylindrical Shell Structures”, Computer and Structures, Vol. 41(1), pp. 41-52.
[19]. Huffington, N.J., and Hoppmann, W.H. (1957). “On the Transverse Vibrations of Rectangular Orthotropic Plates”, ASME Applied Mechanics, Paper No.57-A-85, pp.389-395.
[20]. D. Roy and L.S. Ramachandra, (2001a). A Generalized Local Linearization Principle for Non-linear Dynamical Systems. Jl. Sound and Vibration. Vol.241. pp. 653-679.
[21]. D. Roy and LS. Ramachand.ra (2001b). A Semi-analytical Locally Transversal Linearization Method for Non-linear Dynamical Systems. Int. J. Num. Meth. Engng. Vol.51. pp. 203-224.