References
[1]. Joshi, P. H., Zhang, L., Hossain, I. M., Abbas, H. A.,
Kottokkaran, R., Nehra, S. P., & Dalal, V. L. (2016). The
physics of photon induced degradation of perovskite solar cells. AIP Advances, 6(11), 115114. https://doi.org/10.1063/1.4967817
[2]. Konstantakou, M., & Stergiopoulos, T. (2017). A critical
review on tin halide perovskite solar cells. Journal of
Materials Chemistry A, 5(23), 11518-11549. https://doi.org/10.1039/C7TA00929A
[3]. Liao, Y., Liu, H., Zhou, W., Yang, D., Shang, Y., Shi, Z., &
Ning, Z. (2017). Highly oriented low-dimensional tin halide
perovskites with enhanced stability and photovoltaic
performance. Journal of the American Chemical
Society, 139(19), 6693-6699. https://doi.org/10.1021/jacs.7b01815
[4]. Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a
planar heterojunction structure prepared using roomtemperature
solution processing techniques. Nature
Photonics, 8(2), 133-138. https://doi.org/10.1038/nphoton.2013.342
[5]. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O.,
Wang, J. T. W., Stranks, S. D., & Nicholas, R. J. (2015).
Direct measurement of the exciton binding energy and
effective masses for charge carriers in organic–inorganic
tri-halide perovskites. Nature Physics, 11(7), 582-587.
https://doi.org/10.1038/nphys3357
[6]. Reyna, Y., Salado, M., Kazim, S., Perez-Tomas, A.,
Ahmad, S., & Lira-Cantu, M. (2016). Performance and
stability of mixed FAPbI3 (0.85) MAPbBr3 (0.15) halide
perovskite solar cells under outdoor conditions and the
effect of low light irradiation. Nano Energy, 30, 570-579.
https://doi.org/10.1016/j.nanoen.2016.10.053
[7]. Roy, P., Raoui, Y., & Khare, A. (2022). Design and
simulation of efficient tin based perovskite solar cells
through optimization of selective layers: Theoretical
insights. Optical Materials, 125, 112057. https://doi.org/10.1016/j.optmat.2022.112057
[8]. Roy, P., Sinha, N. K., Tiwari, S., & Khare, A. (2020). A
review on perovskite solar cells: Evolution of architecture,
fabrication techniques, commercialization issues and status. Solar Energy, 198, 665-688. https://doi.org/10.1016/j.solener.2020.01.080
[9]. Stoumpos, C. C., Malliakas, C. D., & Kanatzidis, M. G.
(2013). Semiconducting tin and lead iodide perovskites
with organic cations: phase transitions, high mobilities,
and near-infrared photoluminescent properties.
Inorganic Chemistry, 52(15), 9019-9038. https://doi.org/10.1021/ic401215x
[10]. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou,
C., Alcocer, M. J., Leijtens, T., & Snaith, H. J. (2013).
Electron-hole diffusion lengths exceeding 1 micrometer
in an organometal trihalide perovskite absorber. Science,
342(6156), 341-344. https://doi.org/10.1126/science.1243982
[11]. Takahashi, Y., Hasegawa, H., Takahashi, Y., & Inabe,
T. (2013). Hall mobility in tin iodide perovskite CH3NH3SnI3:
Evidence for a doped semiconductor. Journal of Solid
State Chemistry, 205, 39-43. https://doi.org/10.1016/j.jssc.2013.07.008
[12]. Valverde-Chávez, D. A., Ponseca, C. S., Stoumpos,
C. C., Yartsev, A., Kanatzidis, M. G., Sundström, V., &
Cooke, D. G. (2015). Intrinsic femtosecond charge
generation dynamics in single crystal CH 3 NH 3 PbI 3.
Energy & Environmental Science, 8(12), 3700-3707.
https://doi.org/10.1039/C5EE02503F
[13]. Wang, Y., & Han, L. (2019). Research activities on
perovskite solar cells in China. Science China Chemistry,
62, 822-828. https://doi.org/10.1007/s11426-019-9461-1
[14]. Yu, C. J. (2019). Advances in modelling and
simulation of halide perovskites for solar cell applications.
Journal of Physics: Energy, 1(2), 022001. https://doi.org/10.1088/2515-7655/aaf143
[15]. Zhang, Y., Zhang, H., Zhang, X., Wei, L., Zhang, B.,
Sun, Y., & Li, Y. (2018). Major impediment to highly
efficient, stable and low-cost perovskite solar cells.
Metals, 8(11), 964. https://doi.org/10.3390/met8110964