References
[1]. Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound
imaging technologies for breast cancer detection and
management: A review. Ultrasound in Medicine & Biology,
44(1), 37-70. https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
[2]. Gupta, K., Sandhu, P., Arora, S., & Bedi, G. (2018). Role
of high resolution ultrasound complementary to digital
mammography. Annals of African Medicine, 17(3), 117-124. https://doi.org/10.4103/aam.aam_36_17
[3]. Hirsch, L., Huang, Y., Luo, S., Rossi Saccarelli, C., Lo
Gullo, R., Daimiel Naranjo, I., ... & Sutton, E. J. (2021).
Radiologist-level performance by using deep learning for
segmentation of breast cancers on MRI scans. Radiology:
Artificial Intelligence, 4(1), e200231. https://doi.org/10.1148/ryai.200231
[4]. Kanojia, M. G., Ansari, M. A. M. H., Gandhi, N., &
Yadav, S. K. (2021). Image processing techniques for
breast cancer detection: A review. In Intelligent Systems
Design and Applications: 19th International Conference
on Intelligent Systems Design and Applications (ISDA 2019) (pp. 649-660). Springer International Publishing.
https://doi.org/10.1007/978-3-030-49342-4_63
[5]. Kim, B., Serfa Juan, R. O., Lee, D. E., & Chen, Z. (2021).
Importance of image enhancement and CDF for fault
assessment of photovoltaic module using IR thermal
image. Applied Sciences, 11(18), 8388. https://doi.org/10.3390/app11188388
[6]. Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L.
(2013). Image texture feature extraction using GLCM
approach. International Journal of Scientific and
Research Publications, 3(5), 290-294.
[7]. Morrow, M., Waters, J., & Morris, E. (2011). MRI for
breast cancer screening, diagnosis, and treatment. The
Lancet, 378(9805), 1804-1811. https://doi.org/10.1016/S0140-6736(11)61350-0
[8]. Sathish, D., Kamath, S., Prasad, K., & Kadavigere, R.
(2019). Role of normalization of breast thermogram images and automatic classification of breast cancer.
The Visual Computer, 35, 57-70. https://doi.org/10.1007/s00371-017-1447-9
[9]. Sood, R., Rositch, A. F., Shakoor, D., Ambinder, E., Pool,
K. L., Pollack, E., ... & Harvey, S. C. (2019). Ultrasound for
breast cancer detection globally: A systematic review
and meta-analysis. Journal of Global Oncology, 5, 1-17.
https://doi.org/10.1200/JGO.19.00127
[10]. Suryanarayanan, S., Karellas, A., Vedantham, S., &
Sechopoulos, I. (2006). Theoretical analysis of highresolution
digital mammography. Physics in Medicine &
Biology, 51(12), 3041. https://doi.org/10.1088/0031-9155/51/12/003
[11]. Zhang, Y. N., Xia, K. R., Li, C. Y., Wei, B. L., & Zhang, B.
(2021). Review of breast cancer pathologigcal image
processing. BioMed Research International, 2021, 1-7.
https://doi.org/10.1155/2021/1994764