References
[1]. Ajie, I. J., Ikhile, M. N. O., & Onumanyi, P. (2014). A family of block methods derived from TOM and BDF pairs for stiff
ordinary differential equations. American Journal of Mathematics and Statistics, 4(2), 121-130.
https://doi.org/10.5923/j.ajms.20140402.08
[2]. Akinfenwa, O. A., Jator, S. N., & Yao, N. M. (2012). On the stability of continuous block backward differentiation formula
for solving stiff ordinary differential equations. Journal of Modern Methods in Numerical Mathematics, 3(2), 50-58.
https://doi.org/10.20454/jmmnm.2012.321
[3]. Atsi, K., & Kumleng, G. M. (2020). A family of modified backward differentiation formula (BDF) type block methods for the
solution of stiff ordinary differential equations. International Journal of Statistics and Applied Mathematics, 5(2), 09-16.
[4]. Atsi, K., & Kumleng, G. M. (2021). Block extended trapezoidal rule of the second kind (Etr2) for the direct soltion of second
order initial value problems of ordinary differential equations. IOSR Journal of Mathematics (IOSR-JM), 17(2), 10-14.
https://doi.org/10.9790/5728-1702041014
[5]. Atsi, K., Hambagda, B., Ogunwuyi, F. E., & Kumleng, G. M. (2021). A block integrator for the solution of first order ordinary
differential equations using legendre polynomial. Asian Journal of Pure and Applied Mathematics, 3(2) 1-7.
[6]. Chollom, J. P., Ndam, J. N., & Kumleng, G. M. (2007). On some properties of the block linear multi-step methods.
Science World Journal, 2(3), 11-17. https://doi.org/10.4314/swj.v2i3.51747
[7]. Kumleng, G. M., Chollom, J. P., & Longwap, S. (2013). A modified block adam moulton (MOBAM) method for the solution
of stiff initial value problems of ordinary differential equations. Research Journal of Mathematics and Statistics, 5(4), 32-42.
[8]. Kumleng, G. M., Chollom, J. P., & Omagwu, S. (2015). A class of new block generalized adams implicit runge-kutta
collocation methods. International Journal of Scientific & Engineering Research, 6(12), 10-19.
[9]. Kumleng, G. M., Longwap, S., & Adee, S. O. (2013). A class of a-stable order four and six linear multistep methods for stiff
initial value problems. Mathematical Theory and Modeling, 3(11), 1-9.
[10]. Skwame, Y., Sunday, J., & Ibijola, E. A. (2012). L-stable block hybrid simpson's methods for numerical solution of initial
value problems in stiff ordinary differential equations. International Journal of Pure and Applied Sciences and Technology,
11(2), 45-54.